Homework 3

due April 25, 2014 in class
(1) Let a, b be elements of a field F, with $a \neq 0$. Prove that a polynomial $f(x) \in F[x]$ is irreducible if and only if $f(a x+b)$ is irreducible.
(2) Factor 30 into primes in $\mathbb{Z}[i]$.
(3) (Artin 12.5.5) Let π be a Gauß prime. Prove that π and $\bar{\pi}$ are associate if and only if either π is associate to an integer prime or $\pi \bar{\pi}=2$.
(4) (Artin 12.5.6) Let R be the ring $\mathbb{Z}[\sqrt{3}]$. Prove that a prime integer p is a prime element of R if and only if the polynomial $x^{2}-3$ is irreducible in $\mathbb{F}_{p}[x]$.
(5) For the proof of Theorem 12.3.8 of Artin it is assumed that factorization exists in the polynomial ring $\mathbb{Z}[x]$. Explain why this is true.
(6) Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}$ be prime. Suppose that the coefficients of f satisfy the following conditions:
(a) p does not divide a_{n};
(b) p divides a_{n-1}, \cdots, a_{0};
(c) p^{2} does not divide a_{0}.

Show that $f(x)$ is irreducible in $\mathbb{Q}[x]$. If f is primitive, it is irreducible in $\mathbb{Z}[x]$.
(7) Use Problem 6 to show that $x^{4}+10 x+5$ is irreducible in $\mathbb{Z}[x]$. Show that $x^{n}-p$ is irreducible in $\mathbb{Z}[x]$ for $n \geq 2$ and p a prime integer. Is it possible to use Problem 6 to show that $x^{4}+1$ is irreducible? (Hint: Combine Problem 6 with Problem 1 with $a=b=1$).

