Homework 3

due April 25, 2014 in class

- (1) Let a, b be elements of a field F, with $a \neq 0$. Prove that a polynomial $f(x) \in F[x]$ is irreducible if and only if f(ax + b) is irreducible.
- (2) Factor 30 into primes in $\mathbb{Z}[i]$.
- (3) (Artin 12.5.5) Let π be a Gauß prime. Prove that π and $\overline{\pi}$ are associate if and only if either π is associate to an integer prime or $\pi\overline{\pi} = 2$.
- (4) (Artin 12.5.6) Let R be the ring $\mathbb{Z}[\sqrt{3}]$. Prove that a prime integer p is a prime element of R if and only if the polynomial $x^2 3$ is irreducible in $\mathbb{F}_p[x]$.
- (5) For the proof of Theorem 12.3.8 of Artin it is assumed that factorization exists in the polynomial ring $\mathbb{Z}[x]$. Explain why this is true.
- (6) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$ and let $p \in \mathbb{Z}$ be prime. Suppose that the coefficients of f satisfy the following conditions:
 - (a) p does not divide a_n ;
 - (b) p divides a_{n-1}, \cdots, a_0 ;
 - (c) p^2 does not divide a_0 .

Show that f(x) is irreducible in $\mathbb{Q}[x]$. If f is primitive, it is irreducible in $\mathbb{Z}[x]$.

(7) Use Problem 6 to show that $x^4 + 10x + 5$ is irreducible in $\mathbb{Z}[x]$. Show that $x^n - p$ is irreducible in $\mathbb{Z}[x]$ for $n \ge 2$ and p a prime integer. Is it possible to use Problem 6 to show that $x^4 + 1$ is irreducible? (Hint: Combine Problem 6 with Problem 1 with a = b = 1).