## Homework 4

due May 2, 2014 in class
(1) (a) (Artin 14.1.2) Let $V$ be an abelian group. Prove that if $V$ has the structure of a $\mathbb{Q}$-module with its given law of composition as addition, then this structure is uniquely determined.
(b) Prove that no finite abelian group has a $\mathbb{Q}$-module structure.
(2) The annihilator of an $R$-module $V$ is the set $I=\{r \in R \mid r V=0\}$.
(a) Prove that $I$ is an ideal of $R$.
(b) What is the annihilator of the $\mathbb{Z}$-module $\mathbb{Z} /(2) \times \mathbb{Z} /(3) \times \mathbb{Z} /(4)$ ? What is the annihilator of the $\mathbb{Z}$-module $\mathbb{Z}$ ?
(3) (Artin 14.2.1) Let $R=\mathbb{C}[x, y]$, and let $M$ be the ideal of $R$ generated by the two elements $(x, y)$. Prove or disprove: $M$ is a free $R$-module.
(4) Let $A$ be an $n \times n$ matrix with coefficients in a ring $R$, let $\varphi: R^{n} \rightarrow R^{n}$ be left multiplication by $A$, and let $d=\operatorname{det} A$. Prove or disprove: The image of $\varphi$ is equal to $d R^{n}$.
(5) Let $I$ be an ideal of a ring $R$. Prove that $I$ is a free $R$-module if and only if it is a principal ideal, generated by an element $\alpha$ which is not a zero divisor in $R$.
(6) (Artin 14.4.1(c)) Determine integer matrices $Q^{-1}, P$ which diagonalize the matrix

$$
A=\left(\begin{array}{lll}
4 & 7 & 2 \\
2 & 4 & 6
\end{array}\right)
$$

(7) Let $d_{1}, d_{2}, \ldots$ be the integers referred to in Theorem 14.4.6 in Artin.
(a) (Artin 14.4.2) Prove that $d_{1}$ is the greatest common divisor of the entries $a_{i j}$ of $A$.
(b) Prove that $d_{1} d_{2}$ is the greatest common divisor of the determinants of the $2 \times 2$ minors of $A$.

