Homework 4

due May 2, 2014 in class

- (1) (a) (Artin 14.1.2) Let V be an abelian group. Prove that if V has the structure of a \mathbb{Q} -module with its given law of composition as addition, then this structure is uniquely determined.
 - (b) Prove that no finite abelian group has a Q-module structure.
- (2) The annihilator of an *R*-module V is the set $I = \{r \in R \mid rV = 0\}$.
 - (a) Prove that I is an ideal of R.
 - (b) What is the annihilator of the \mathbb{Z} -module $\mathbb{Z}/(2) \times \mathbb{Z}/(3) \times \mathbb{Z}/(4)$? What is the annihilator of the \mathbb{Z} -module \mathbb{Z} ?
- (3) (Artin 14.2.1) Let $R = \mathbb{C}[x, y]$, and let M be the ideal of R generated by the two elements (x, y). Prove or disprove: M is a free R-module.
- (4) Let A be an $n \times n$ matrix with coefficients in a ring R, let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be left multiplication by A, and let $d = \det A$. Prove or disprove: The image of φ is equal to $d\mathbb{R}^n$.
- (5) Let I be an ideal of a ring R. Prove that I is a free R-module if and only if it is a principal ideal, generated by an element α which is not a zero divisor in R.
- (6) (Artin 14.4.1(c)) Determine integer matrices Q^{-1} , P which diagonalize the matrix

$$A = \begin{pmatrix} 4 & 7 & 2 \\ 2 & 4 & 6 \end{pmatrix}.$$

- (7) Let d_1, d_2, \ldots be the integers referred to in Theorem 14.4.6 in Artin.
 - (a) (Artin 14.4.2) Prove that d_1 is the greatest common divisor of the entries a_{ij} of A.
 - (b) Prove that d_1d_2 is the greatest common divisor of the determinants of the 2×2 minors of A.