Homework 5

due May 16, 2014 in class
(1) (Artin 14.2.4(b)) Let I be an ideal of a ring R. Prove or disprove: If R / I is a free R-module, then $I=0$.
(2) (Artin 14.5.1) Let $R=\mathbb{Z}[\delta]$, where $\delta=\sqrt{-5}$. Determine a presentation matrix as R-module for the ideal $(2,1+\delta)$.
(3) Let A be the presentation matrix of a module V with respect to a set of generators $\left(v_{1}, \ldots, v_{m}\right)$. Let $\left(w_{1}, \ldots, w_{r}\right)$ be another set of elements of V, and write the elements in terms of the generators, say $w_{i}=\sum_{j} p_{i j} v_{j}$, where $p_{i j} \in R$. Let $P=\left(p_{i j}\right)$. Prove that the block matrix

$$
\left(\begin{array}{cc}
A & -P^{t} \\
0 & I
\end{array}\right)
$$

is a presentation matrix for V with respect to the set of generators $\left(v_{1}, \ldots, v_{m} ; w_{1}, \ldots, w_{r}\right)$.
(4) Let R be a ring, and let V be an R-module, presented by a diagonal $m \times n$ matrix $A: V \cong R^{m} / A R^{n}$. Let $\left(v_{1}, \ldots, v_{m}\right)$ be the corresponding generators of V, and let d_{i} be the diagonal entries of A. Prove that V is isomorphic to a direct product of the modules $R /\left(d_{i}\right)$.
(5) (Artin 14.7.7) Let $R=\mathbb{Z}[i]$ and let V be the R-module generated by elements v_{1} and v_{2} with relations $(1+i) v_{1}+(2-i) v_{2}=0,3 v_{1}+5 i v_{2}=0$. Write this module as a direct sum of cyclic modules.
(6) Let W_{1}, \ldots, W_{k} be submodules of an R-module V such that $V=$ $\sum_{i} W_{i}$. Assume that $W_{1} \cap W_{2}=0,\left(W_{1}+W_{2}\right) \cap W_{3}=0, \ldots,\left(W_{1}+\right.$ $\left.W_{2}+\cdots+W_{k-1}\right) \cap W_{k}=0$. Prove that V is the direct sum of the modules W_{1}, \ldots, W_{k}.
(7) Give a list of all abelian groups of order 180 (up to isomorphism).

