Homework 6

due May 23, 2014 in class
(1) (Artin 4.7.2) Prove that

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & -1 \\
1 & 1 & 1
\end{array}\right)
$$

is an idempotent matrix, and find its Jordan form.
(2) (Artin 4.7.3) Let V be a complex vector space of dimension 5 , and let T be a linear operator on V which has characteristic polynomial $(t-\alpha)^{5}$. Suppose that the rank of the operator $T-\alpha I$ is 2 . What are the possible Jordan forms for T ?
(3) Show that every complex $n \times n$ matrix is similar to a matrix of the form $D+N$, where D is diagonal, N is nilpotent, and $D N=N D$.
(4) Prove the Cayley-Hamilton Theorem, that if $p(t)$ is the characteristic of an $n \times n$ matrix A, then $p(A)=0$.
(5) Let F be a field containing exactly eight elements. Prove or disprove: The characteristic of F is 2 .
(6) Let α be an algebraic element over a field F, and let $f(x)$ be its irreducible polynomial of degree n. Prove that $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$ is a basis of $F[\alpha]$ as a vector space over F.
(7) Prove that $x^{3}+x^{2}+1$ is irreducible in $\mathbb{Z} / 2 \mathbb{Z}[x]$. Use this polynomial to construct a field of order 8. What is the order of its multiplicative group? Describe the group explicitly.

