Homework 7

due May 30, 2014 in class
(1) (Artin 15.2.1) Let α be a complex root of the irreducible polynomial $x^{3}-3 x+4$. Find the inverse of $\alpha^{2}+\alpha+1$ in the form $a+b \alpha+c \alpha^{2}$, $a, b, c \in \mathbb{Q}$.
(2) (Artin 15.3.1) Let F be a field, and let α be an element which generates a field extension of F of degree 5 . Prove that α^{2} generates the same extension.
(3) Let K be a field generated over F by two elements α, β of relatively prime degrees m, n, respectively. Prove that $[K: F]=m n$.
(4) (a) Let $F \subset F^{\prime} \subset K$ be field extensions.

Prove that if $[K: F]=\left[K: F^{\prime}\right]$, then $F=F^{\prime}$.
(b) Give an example showing that this need not be the case if F is not contained in F^{\prime}.
(5) Prove or disprove: Every algebraic extension is a finite extension.
(6) (Artin 15.6.1) Let F be a field of characteristic zero, let f^{\prime} denote the derivative of a polynomial $f \in F[x]$, and let g be an irreducible polynomial which is a common divisor of f and f^{\prime}. Prove that g^{2} divides f.
(7) Let $f(x)$ be an irreducible polynomial of degree n over a field F. Let $g(x)$ be any polynomial in $F[x]$. Prove that every irreducible factor of the composite polynomial $f(g(x))$ has degree divisible by n.

