Homework 8

due June 6, 2014 in class
(1) For which fields F and which primes p does $x^{p}-x$ have a multiple root?
(2) Let F be a field of characteristic p.
(a) Apply Proposition 15.6 .7 to the polynomial $x^{p}+1$.
(b) Factor this polynomial into irreducible factors in $F[x]$.
(3) (Artin 15.7.2) Determine the irreducible polynomial of each of the elements of \mathbb{F}_{8} in the list 15.7.8.
(4) (Artin 15.7.7) Let K be a finite field. Prove that the product of the nonzero elements of K is -1 .
(5) Prove that every element of \mathbb{F}_{p} has exactly one p th root.
(6) (Artin 15.7.8) The polynomials $f(x)=x^{3}+x+1$ and $g(x)=x^{3}+x^{2}+1$ are irreducible overe \mathbb{F}_{2}. Let K be the field extension obtained by adjoining a root of f, and let L be the extension obtained by adjoining of g. Describe explicitly an isomorphism from K to L, and determine the number of such isomorphisms.
(7) Determine the intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Extra credit problem:

Use the Jordan Normal Form to prove the Spectral Theorem: every self-adjoint linear operator on a complex finite-dimensional vector space has real eigenvalues and there exists a basis with respect to which the matrix for this operator is diagonal.

