n-Cube

First we define the addition of two vectors $u, v \in \mathbb{Z}_{2}^{n}$

```
def dist(u,v):
    Addition of two vectors in `Z_2^n`.
    EXAMPLES::
        sage: u=(1,0,1,1,1,0)
        sage: v=(0,0,1,1,0,0)
        sage: dist(u,v)
        2
    " ""
    h = [(u[i]+v[i])%2 for i in range(len(u))]
    return sum(h)
```

The distance function measures in how many slots two vectors in \mathbb{Z}_{2}^{n} differ:

```
u=(1,0,1,1,1,0)
v=(0,0,1,1,0,0)
dist(u,v)
    2
```

Now we are going to define the n-cube as the graph with vertices in \mathbb{Z}_{2}^{n} and edges between vertex u and vertex v if they differ in one slot, that is, the distance function is 1 .

```
def cube(n):
    G = Graph(2**n)
    vertices = Tuples([0,1],n)
    for i in range(2**n):
        for j in range(2**n):
            if dist(vertices[i],vertices[j]) == 1:
            G.add_edge(i,j)
    return G
```

cube (4)

Graph on 16 vertices

We can now look at the 2,3 , and 4 dimensional cube:
show(cube (2))

show (cube (3))

show (cube (4))

Now we can experiment and check Corollary 2.4 in Stanley's book:

```
G = cube(2)
G.adjacency_matrix().eigenvalues()
    [2, -2, 0, 0]
G = cube(3)
G.adjacency_matrix().eigenvalues()
```

 \([3,-3,1,1,1,-1,-1,-1]\)
 G = cube (4)
G.adjacency_matrix().eigenvalues()
$[4,-4,2,2,2,2,-2,-2,-2,-2,0,0,0,0,0,0]$
It is easy now to slightly vary this problem and change the edge set by connecting vertices u and v if their distance is 2 (see Problem 3 on Homework 1):

```
def cube_2(n):
    G = Graph(2**n)
    vertices = Tuples([0,1],n)
    for i in range(2**n):
        for j in range(2**n):
            if dist(vertices[i],vertices[j]) == 2:
                G.add_edge(i,j)
    return G
```

```
G = cube_2(2);
G.adjacency_matrix().eigenvalues()
```

 \([1,1,-1,-1]\)
 G = cube_2(4);
G.adjacency_matrix().eigenvalues()
$[6,6,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0]$

Note that the graph is in fact disconnected:
show(cube_2(2))

show(cube_2(3))

show(cube_2(4))

show(cube_2(6))

