
Walks on graphs
Create a graph with 4 vertices

G = Graph(4)
G 

       Graph on 4 vertices

This graph has no edges yet!

G.vertices() 

       [0, 1, 2, 3]

G.edges() 

       []

First we need to tell Sage that our graph can have loops and multiple edges.

G.allow_loops(True)
G.allow_multiple_edges(True) 

       

Now we are ready to add our edges by specifying tuple of vertices that are connected by an edge. If
there are multiple edges, we need to add the tuple with multiplicity.

G.add_edges([(0,0),(0,0),(0,1),(0,3),(1,3),(1,3)]) 

       

Now let's look at the graph!

show(G) 



       

We can construct the adjacency matrix.

A = G.adjacency_matrix()
A 

       

[2 1 0 1]
[1 0 0 2]
[0 0 0 0]
[1 2 0 0]

In class we learned that the entry in row  and column  of the -th power of  gives us the number
of paths from vertex  to vertex 

A**2 

       

[6 4 0 4]
[4 5 0 1]
[0 0 0 0]
[4 1 0 5]

There are 4 paths of length 2 from vertex 0 to vertex 1: take either loop at 0 and then the edge 01 (2
choices) or take the edge 03 and then either of the two edges 31 (two choices):

(A**2)[0,1] 

       4

To count the number of closed walks, we can also look at the sum of the -th powers of the
eigenvalues:

A.eigenvalues() 

       [0, -2, 0.5857864376269049?, 3.414213562373095?]

sum(la**2 for la in A.eigenvalues()) 
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       16.00000000000000?

We can achieve the same by looking at the trace of the -th power of the matrix:

(A^2).trace() 

       16
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