Homework 2

due January 23, 2002 in class

- 1. Artin 6.1.2 (pg. 229)
- 2. Artin 6.1.6 (pg. 229)
- 3. Artin 6.4.2 (pg. 231)
- 4. Let G be a group with center Z and for each $g \in G$, let Z(g) denote the centralizer of g. Show that $g \in Z$ if and only if Z(g) = G.
- 5. Let G be a finite group and let $P \leq G$ be a Sylow p-subgroup of G. Show that P is the unique Sylow p-subgroup if and only if P is normal in G.
- 6. Let G be a group, $H \leq G$ and N(H) be the normalizer of H in G. Show that N(H) is the largest subgroup of G containing H as a normal subgroup.
- 7. Let G be a finite group. Show that the number of 1's in the class equation of G is exactly the order of the center of G.
- 8. If H is a normal subgroup of order p^k of a finite group G, then H is contained in every Sylow p-subgroup of G.