MAT 149A

Homework 2

due Wednesday January 22 in class

1. Biggs 4.4 # 5 page 74

Show that the number of derangements of $\{1, 2, ..., n\}$ in which a given object (say 1) is in a 2-cycle is $(n-1)d_{n-2}$. Hence construct a direct proof of the recursion formula

$$d_n = (n-1)(d_{n-1} + d_{n-2}).$$

2. Biggs 4.5 # 4 page 79

Show that if $1 \le x \le n$ then gcd(x, n) = gcd(n - x, n). Hence prove that the sum of all integers x which satisfy $1 \le x \le n$ and gcd(x, n) = 1 is $\frac{1}{2}n\Phi(n)$.

3. Biggs 4.8 # 6 page 87

Show that when $n \ge m$

$$\binom{m}{m} + \binom{m+1}{m} + \dots + \binom{n}{m} = \binom{n+1}{m+1}.$$

4. Biggs 5.5 # 3 page 104

Prove that if π and τ are any members of S_n then $\pi\tau$ and $\tau\pi$ have the same type.

5. Biggs 5.7 # 11 page 111; mistake corrected

Use the sieve principle to show that the number of surjections from an n-set to a k-set is

$$\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}.$$

6. Biggs 5.7 # 16 page 112

Show that the number of permutations in S_6 of type [1⁴2] is the same as the number of type [2³]. If α is of the first type, find the number of permutations β of the second type which satisfy $\alpha\beta = \beta\alpha$.