Homework 1

due January 21, 2004
Question 1. In class, we defined the complex numbers \mathbb{C} as the set \mathbb{R}^{2} with addition $z+z^{\prime}=(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)$ and multiplication $z \cdot z^{\prime}=(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}-y y^{\prime}, x y^{\prime}+x^{\prime} y\right)$. Show that \mathbb{C} satisfies the field axioms.

Question 2. Verify the following properties for $z, w \in \mathbb{C}$:
(1) $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \bar{w}$
(2) $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ and $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$
(3) $z=\bar{z}$ if and only if $z \in \mathbb{R}$ is purely real.
$z=-\bar{z}$ if and only if $z \in i \mathbb{R}$ is purely imaginary.
Find the maximal subset of \mathbb{C} which is left fixed by complex conjugation.

Question 3. Prove the following identities:
(1) $\langle z, w\rangle^{2}+\langle i z, w\rangle^{2}=|z|^{2}|w|^{2}$
(2) $|\langle z, w\rangle| \leq|z| \cdot|w|$ Cauchy-Schwartz inequality
(3) $|z+w|^{2}=|z|^{2}+|w|^{2}+2\langle z, w\rangle$ Cosine law
(4) $|z| \geq 0$ and $|z|=0$ if and only if $z=0$
(5) $|z|^{2}=\langle z, z\rangle$
(6) $|z w|=|z| \cdot|w|$
(7) $|z+w| \leq|z|+|w|$ triangle inequality
(8) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$.

Question 4. In class we defined the function $\tilde{e}(\theta)=\cos (\theta)+i \sin (\theta)$. Show that

$$
\frac{1}{\tilde{e}(\theta)}=\tilde{e}(-\theta)
$$

and use this fact to extend de Moivre's theorem to all $n \in \mathbb{Z}$.
Question 5. Prove Lagrange's trigonometric identity:

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin \frac{\theta}{2}}
$$

where we assume that $\sin \theta / 2 \neq 0$. (Hint: Transform the left-hand side into the real part of sums of exponentials and use $1+x+x^{2}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}$.)

Question 6. Another representation of complex numbers! Let us call

$$
\mathbf{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{i}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Then we have

$$
z=\mathbf{1} x+\mathbf{i} y=\left(\begin{array}{cc}
x & y \tag{1}\\
-y & x
\end{array}\right) .
$$

(i) Show that the complex number algebra $\mathbf{1} \cdot \mathbf{1}=-\mathbf{i} \cdot \mathbf{i}=\mathbf{1} \cdot \mathbf{i}-\mathbf{i} \cdot \mathbf{1}+\mathbf{1}=$ 1 holds, where "." denotes matrix multiplication.
(ii) Deduce that matrices of the form (1) form a field isomorphic to complex numbers under matrix multiplication and addition.
(iii) Verify that the matrix exponential satisfies

$$
\exp (\mathbf{i} \theta)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\mathbf{1} \cos \theta+\mathbf{i} \sin \theta
$$

(iv) How does the matrix in (iii) act on vectors $\binom{x}{y}$ in the plane \mathbb{R}^{2} ?

