## Homework 2

due January 28, 2004
Question 1. Show that the complex derivative has the following properties (for problems (3)-(7) we assume that $f$ and $g$ are analytic on an appropriate open set):

$$
\begin{equation*}
\text { If } f^{\prime}\left(z_{0}\right) \text { exists, then } f \text { is continuous at } z_{0} \text {. } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d z} z^{n}=n z^{n-1} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d}{d z}(f+g)=\frac{d f}{d z}+\frac{d g}{d z}  \tag{3}\\
& \frac{d}{d z}(c f)=c \frac{d f}{d z} \quad \text { for } c \in \mathbb{C}  \tag{4}\\
& \frac{d}{d z}(f \cdot g)=\frac{d f}{d z} g+f \frac{d g}{d z}  \tag{5}\\
& \frac{d}{d z}\left(\frac{f}{g}\right)=\frac{\frac{d f}{d z} g-f \frac{d g}{d z}}{g^{2}} \quad \text { for } g(z) \neq 0  \tag{6}\\
& \frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z) \tag{7}
\end{align*}
$$

Question 2. Compute $d f / d z$ when it exists for
(i) $f(z)=1 / z$
(ii) $f(z)=x^{2}+i y^{2}$
(iii) $f(z)=z \operatorname{Im}(z)$
(iv) $f(z)=\bar{z}$

Question 3. Study

$$
f(z)= \begin{cases}\frac{x^{3} y(y-i x)}{x^{6}+y^{2}} & \text { for } z \neq 0 \\ 0 & \text { for } z=0\end{cases}
$$

Show that even though $[f(z)-f(0)] / z \rightarrow 0$ as $z \rightarrow 0$ for any straight line through the origin, $f(z)$ is nevertheless not complex differentiable at $z=0$.

Question 4. Use the Cauchy-Riemann relations to show that an analytic function that takes only real values in some neighborhood, must be constant there.

Question 5. Define the symbols $\partial f / \partial z$ and $\partial f / \partial \bar{z}$ by

$$
\begin{aligned}
& \frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{1}{i} \frac{\partial f}{\partial y}\right) \\
& \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{1}{i} \frac{\partial f}{\partial y}\right)
\end{aligned}
$$

(i) Show that the Cauchy-Riemann equations are equivalent to $\partial f / \partial \bar{z}=0$.
(ii) An antianalytic function is defined by the condition $\partial f / \partial z=0$. Derive the Cauchy-Riemann relations for antianalytic functions.
(iii) Show that if $f$ is analytic, then $f^{\prime}=\partial f / \partial z$.
(iv) If $f(z)=z$, show that $\partial f / \partial z=1$ and $\partial f / \partial \bar{z}=0$.
(v) If $f(z)=\bar{z}$, show that $\partial f / \partial z=0$ and $\partial f / \partial \bar{z}=1$.
(vi) Show that the symbols $\partial / \partial z$ and $\partial / \partial \bar{z}$ obey the sum, product, and scalar multiple rules for derivatives.
(vii) Show that the expression

$$
\sum_{n=0}^{N} \sum_{m=0}^{M} a_{n m} z^{n} \bar{z}^{m}
$$

with scalar $a_{n m} \in \mathbb{C}$ is an analytic function if and only if $a_{n m}=0$ whenever $m \neq 0$.

Question 6. Let us study the Cauchy-Riemann relations in polar coordinates. In what follows, assume that $f(z)$ is analytic and that $z=r \exp (i \theta)$.
(i) Using that $d f / d z$ can be computed for any direction of approach $d z \rightarrow 0$, show that

$$
\frac{d f}{d z}=e^{-i \theta} \frac{\partial f}{\partial r}, \quad \frac{d f}{d z}=\frac{1}{i z} \frac{\partial f}{\partial \theta} .
$$

(ii) Now, calling $f=u+i v$, deduce that

$$
\partial_{r} u=\frac{1}{r} \partial_{\theta} v, \quad \frac{1}{r} \partial_{\theta} u=-\partial_{r} v .
$$

(iii) These relations are just Cauchy-Riemann in polar coordinates. Check that they yield Laplace's equation $\Delta u=0=\Delta v$ where $\Delta=\partial_{r}^{2}+r^{-1} \partial_{r}+r^{-2} \partial_{\theta}^{2}$.
(iv) Verify that the function $u(r, \theta)=r^{2} \cos (2 \theta)$ is harmonic. Use the polar form of Cauchy-Riemann to find the conjugate harmonic function $v(r, \theta)$. Express your final answer $f=u+i v$ in terms of $z$.

