Homework 7

due March 3, 2004
Question 1. If $\sum_{k=1}^{\infty} a_{k}$ converges, prove that $a_{k} \rightarrow 0$. If $\sum_{k=1}^{\infty} g_{k}(z)$ converges uniformly, show that $g_{k} \rightarrow 0$ uniformly.

Question 2. Show that $\sum_{n=1}^{\infty} \frac{1}{z^{n}}$ is analytic on $A=\{z \in \mathbb{C}| | z \mid>1\}$.
Question 3. Compute a power series expansion for

$$
f(z)=\frac{1}{1-z-z^{2}}=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

to order z^{6}. Type the result for $\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ into
http://www.research.att.com/~njas/sequences/index.html
What do you find? (To reduce the number of entries note that a_{6} through a_{11} are 13, $21,34,55,89,144$.) Can you explain why?

Question 4. Show that

$$
\sinh z=\sum_{n=1}^{\infty} \frac{z^{2 n-1}}{(2 n-1)!} \quad \text { and } \quad \cosh z=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!} .
$$

What is the radius of convergence in each case?
Question 5. Write the coefficients of the power series expansion of $\exp (z)$ about $z=0$ as certain contour integrals. In turn, deduce the following integral identities

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \theta e^{\cos (\theta)} \cos (\sin (\theta)-n \theta)=\frac{2 \pi}{n!} \\
& \int_{0}^{2 \pi} d \theta e^{\cos (\theta)} \sin (\sin (\theta)-n \theta)=0
\end{aligned}
$$

