Homework

Problem 1. Show that the dominance partial order on partitions of n satisfies

$$
\lambda \unlhd \mu \quad \Longleftrightarrow \quad \lambda^{\prime} \unrhd \mu^{\prime}
$$

where the prime denotes the transpose partition.
Problem 2. For $1 \leq i<j \leq n$, define the raising operator $R_{i j}$ on \mathbb{Z}^{n} by

$$
R_{i j}\left(\nu_{1}, \ldots, \nu_{n}\right)=\left(\nu_{1}, \ldots, \nu_{i}+1, \ldots, \nu_{j}-1, \ldots, \nu_{n}\right)
$$

(1) Show that the dominance order \unlhd is the transitive closure of the relation on partitions $\lambda \rightarrow \mu$ if $\mu=R_{i j} \lambda$ for some $i<j$.
(2) Show that μ covers λ if and only if $\mu=R_{i j} \lambda$, where i, j satisfy the following condition: either $j=i+1$ or $\lambda_{i}=\lambda_{j}$ (or both).
(3) Find the smallest n such that the dominance order on partitions of n is not a total ordering, and draw its Hasse diagram.

Problem 3. Let $f \in \Lambda^{n}$, and for any $g \in \Lambda^{n}$ define $g_{k} \in \Lambda^{n k}$ by

$$
g_{k}\left(x_{1}, x_{2}, \ldots\right)=g\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)
$$

Show that

$$
\omega f_{k}=(-1)^{n(k-1)}(\omega f)_{k}
$$

Problem 4. The symmetric functions $f_{\lambda}=\omega m_{\lambda}$ are sometimes called the "forgotten" symmetric functions. Show that the matrix of coefficients of the forgotten symmetric functions f_{λ} expressed in terms of monomial symmetric functions m_{λ} is the transpose of the matrix of the elementary functions e_{λ} expressed in terms of the complete homogeneous symmetric functions h_{λ}.

Problem 5. Using the symmetry of the RSK algorithm, show the following:
(1) A permutation π is an involution if and only if $P(\pi)=Q(\pi)$, where $(P(\pi), Q(\pi))$ correspond to π under the RSK algorithm.
(2) The number of involutions of S_{n} is $\sum_{\lambda \vdash n} f^{\lambda}$.
(3) The number of fixed points in an involution π is the number of columns of odd length in $P(\pi)$.
(4) There is a bijection $M \longleftrightarrow T$ between symmetric \mathbb{N}-matrices of finite support and semistandard Young tableaux such that the trace of M is the number of columns of odd length of T.
(5) The following equations hold

$$
\begin{aligned}
\sum_{\lambda} s_{\lambda} & =\prod_{i} \frac{1}{1-x_{i}} \prod_{i<j} \frac{1}{1-x_{i} x_{j}} \\
\sum_{\lambda^{\prime} \text { even }} s_{\lambda} & =\prod_{i<j} \frac{1}{1-x_{i} x_{j}}
\end{aligned}
$$

where λ^{\prime} even means that every part in λ^{\prime} is even.
Problem 6. Let ∂p_{k} be the operator on symmetric functions given by partial differentiation with respect to p_{k}, under the identification of symmetric functions with polynomials $f \in \mathbb{Q}\left[p_{1}, p_{2}, \ldots\right]$. Show that ∂p_{k} is adjoint with respect to the scalar product to the operator of multiplication by p_{k} / k.

