Homework 2

due Wednesday January 25 in class

1. Biggs 11.4 \# 5 page 114

Show that the number of derangements of $\{1,2, \ldots, n\}$ in which a given object (say 1) is in a 2 -cycle is $(n-1) d_{n-2}$. Hence construct a direct proof of the recursion formula

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right) \quad \text { for } n \geq 3
$$

2. Biggs 11.5 \# 4 page 118

Show that if $1 \leq x \leq n$ then $\operatorname{gcd}(x, n)=\operatorname{gcd}(n-x, n)$. Hence prove that the sum of all integers x which satisfy $1 \leq x \leq n$ and $\operatorname{gcd}(x, n)=1$ is $\frac{1}{2} n \Phi(n)$.
3. Biggs 11.8 \# 6 page 124

Show that when $n \geq m$

$$
\binom{m}{m}+\binom{m+1}{m}+\cdots+\binom{n}{m}=\binom{n+1}{m+1} .
$$

4. Biggs 12.5 \# 3 page 136

Prove that if π and τ are any members of S_{n} then $\pi \tau$ and $\tau \pi$ have the same type.
5. Biggs 12.7 \# 11 page 141; mistake corrected

Use the sieve principle to show that the number of surjections from an n-set to a k-set is

$$
\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

6. Biggs 12.7 \# 16 page 141

Show that the number of permutations in S_{6} of type [$1^{4} 2$] is the same as the number of type $\left[2^{3}\right]$. If α is of the first type, find the number of permutations β of the second type which satisfy $\alpha \beta=\beta \alpha$.

