Homework 4
due Wednesday February 8 in class

1. Biggs 20.2 \# 2 page 262

There are eight symmetry transformations of a square. List them, and draw up the group table (as we did for the symmetries of the equilateral triangle).

2. Biggs 20.3 \# 3 page 264

Suppose G is a group with the property that $g^{2}=1$ for all $g \in G$. Prove that G is a commutative group.

3. Biggs 20.3 \# 5 page 265

Show that the following latin square of order 5 is not a group table.

1	a	b	c	d
a	b	1	d	c
b	c	d	a	1
c	d	a	1	b
d	1	c	b	a

4. Biggs 20.5 \# 2 page 267

By analysing the possible group tables show that, if isomorphic groups are regarded as the same, then
(1) there is just one group of order 2 ;
(2) there is just one group of order 3 ;
(3) there are just two groups of order 4.
5. Let a and b be elements of a group G. Show that a and $b a b^{-1}$ have the same order. Give an example when a and $b a b$ have different orders.
6. Let $S L(2)$ be the group of 2×2 matrices with determinant 1 .
(1) Show that $S L(2)$ is an infinite group (hint: produce infinitely many 2×2 matrices with determinant one).
(2) Find two matrices in $S L(2)$ that do not commute.

