MAT 149A

## Homework 7

due Wednesday March 1 in class

1. Biggs 21.2 \# 5 page 285

Let $G$ be a group of permutations of a set $X$ and let $k$ be an element of $G(x \rightarrow y)$. Prove that $G(x \rightarrow y)$ is equal to the right coset $G_{y} k$, and deduce that if $u$ and $v$ are any two elements in the same orbit if $G$ then $\left|G_{u}\right|=\left|G_{v}\right|$.
2. Biggs 21.2 \# 6 page 285

Let $X=\mathbb{Z}_{5}$ and suppose that $G$ is the cyclic group of permutations of $X$ generated by the permutation $\pi$ defined by the rule $\pi(x)=2 x$. Write down the elements of $G$ in cycle notation and determine the orbits of $G$ on $X$.

## 3. Biggs 21.3 \# 2 page 287

Let $X$ denote the set of corners of a cube and let $G$ denote the group of permutations of $X$ which correspond to rotations of the cube. Show that:
(i) $G$ has just one orbit on $X$;
(ii) if $z$ is any corner, then $\left|G_{z}\right|=3$;
(iii) $|G|=24$.
4. Biggs 21.4 \# 1 page 290

Show that there are just five different necklaces which can be constructed from five white beads and three black beads. Sketch them.
5. Biggs 21.4 \# 3 page 290
6. Biggs 21.7 \# 9 page 295

Show that 57 different cubes can be constructed by painting each face of a cube red, white, or blue.

