Homework Set 2: Exercises on Linear Equations and Vector Spaces

Directions: Submit your solutions to Problems 1, 2 and 4. Separately, please also submit the Proof-Writing-Problems 3 and 5. This homework is due on Friday January 19, 2007 at the beginning of lecture.

As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C} .

- 1. Solve the following systems of linear equations and characterize their solution set (unique solution, no solution,). Also write each system of linear equations as an equation for a single function $f : \mathbb{R}^n \to \mathbb{R}^m$ for appropriate m, n.
 - (a) System of 3 equations in the unknowns x, y, z, w

$$x + 2y - 2z + 3w = 2$$

$$2x + 4y - 3z + 4w = 5$$

$$5x + 10y - 8z + 11w = 12$$

(b) System of 4 equations in the unknowns x, y, z

$$x + 2y - 3z = 4$$

$$x + 3y + z = 11$$

$$2x + 5y - 4z = 13$$

$$2x + 6y + 2z = 22.$$

(c) System of 3 equations in the unknowns x, y, z

$$x + 2y - 3z = -1$$

$$3x - y + 2z = 7$$

$$5x + 3y - 4z = 2.$$

- 2. Show that the space $V = \{(x_1, x_2, x_3) \in \mathbb{F}^3 \mid x_1 + 2x_2 + 2x_3 = 0\}$ forms a vector space.
- 3. Let V be a vector space over \mathbb{F} . Then, given $a \in \mathbb{F}$ and $v \in V$ such that av = 0, prove that either a = 0 or v = 0.
- 4. Give an example of a nonempty subset $U \subset \mathbb{R}^2$ such that U is closed under scalar multiplication but is not a subspace of \mathbb{R}^2 .

- 5. Let V be a vector space over \mathbb{F} , and suppose that W_1 and W_2 are subspaces of V. Prove that their intersection $W_1 \cap W_2$ is also a subspace of V.
- 6. Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over \mathbb{F} , and suppose that W_1 , W_2 , and W_3 are subspaces of V such that $W_1 + W_3 = W_2 + W_3$. Then $W_1 = W_2$.

7. Let $\mathbb{F}[z]$ denote the vector space of all polynomials having coefficient over \mathbb{F} , and define U to be the subspace of $\mathbb{F}[z]$ given by

$$U = \{az^2 + bz^5 \mid a, b \in \mathbb{F}\}.$$

Find a subspace W of $\mathbb{F}[z]$ such that $\mathbb{F}[z] = U \oplus W$.

8. Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over \mathbb{F} , and suppose that W_1 , W_2 , and W_3 are subspaces of V such that $W_1 \oplus W_3 = W_2 \oplus W_3$. Then $W_1 = W_2$.