Homework Set 2: Exercises on Linear Equations and Vector Spaces

Directions: Submit your solutions to Problems 1, 2 and 4. Separately, please also submit the Proof-Writing-Problems 3 and 5. This homework is due on Friday January 19, 2007 at the beginning of lecture.
As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C}.

1. Solve the following systems of linear equations and characterize their solution set (unique solution, no solution,). Also write each system of linear equations as an equation for a single function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ for appropriate m, n.
(a) System of 3 equations in the unknowns x, y, z, w

$$
\begin{aligned}
x+2 y-2 z+3 w & =2 \\
2 x+4 y-3 z+4 w & =5 \\
5 x+10 y-8 z+11 w & =12 .
\end{aligned}
$$

(b) System of 4 equations in the unknowns x, y, z

$$
\begin{aligned}
x+2 y-3 z & =4 \\
x+3 y+z & =11 \\
2 x+5 y-4 z & =13 \\
2 x+6 y+2 z & =22 .
\end{aligned}
$$

(c) System of 3 equations in the unknowns x, y, z

$$
\begin{aligned}
x+2 y-3 z & =-1 \\
3 x-y+2 z & =7 \\
5 x+3 y-4 z & =2 .
\end{aligned}
$$

2. Show that the space $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{F}^{3} \mid x_{1}+2 x_{2}+2 x_{3}=0\right\}$ forms a vector space.
3. Let V be a vector space over \mathbb{F}. Then, given $a \in \mathbb{F}$ and $v \in V$ such that $a v=0$, prove that either $a=0$ or $v=0$.
4. Give an example of a nonempty subset $U \subset \mathbb{R}^{2}$ such that U is closed under scalar multiplication but is not a subspace of \mathbb{R}^{2}.
5. Let V be a vector space over \mathbb{F}, and suppose that W_{1} and W_{2} are subspaces of V. Prove that their intersection $W_{1} \cap W_{2}$ is also a subspace of V.
6. Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over \mathbb{F}, and suppose that W_{1}, W_{2}, and W_{3} are subspaces of V such that $W_{1}+W_{3}=W_{2}+W_{3}$. Then $W_{1}=W_{2}$.
7. Let $\mathbb{F}[z]$ denote the vector space of all polynomials having coefficient over \mathbb{F}, and define U to be the subspace of $\mathbb{F}[z]$ given by

$$
U=\left\{a z^{2}+b z^{5} \mid a, b \in \mathbb{F}\right\} .
$$

Find a subspace W of $\mathbb{F}[z]$ such that $\mathbb{F}[z]=U \oplus W$.
8. Prove or give a counterexample to the following claim:

Claim. Let V be a vector space over \mathbb{F}, and suppose that W_{1}, W_{2}, and W_{3} are subspaces of V such that $W_{1} \oplus W_{3}=W_{2} \oplus W_{3}$. Then $W_{1}=W_{2}$.

