Homework Set 3: Exercises on Linear Spans and Bases

Directions: Please work on all exercises! Hand in Problems 1 and 2 as your "Calculational Homework" and Problems 5 and 7 as your "Proof-Writing Homework" at the beginning of lecture on January 26, 2007.

As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C} .

- 1. Show that the vectors $v_1 = (1, 1, 1)$, $v_2 = (1, 2, 3)$, and $v_3 = (2, -1, 1)$ are linearly independent in \mathbb{R}^3 . Write the vector v = (1, -2, 5) as a linear combination of v_1 , v_2 , and v_3 .
- 2. Consider the complex vector space $V = \mathbb{C}^3$ and the list (v_1, v_2, v_3) of vectors in V, where $v_1 = (i, 0, 0), v_2 = (i, 1, 0)$, and $v_3 = (i, i, -1)$. Show that $\operatorname{span}(v_1, v_2, v_3) = V$.
- 3. Find a basis for the subspace U of \mathbb{R}^5 defined by

$$U = \{ (x_1, x_2, \dots, x_5) \mid x_1 = 3x_2, x_3 = 7x_4 \}.$$

4. Let V be a vector space over \mathbb{F} , and suppose that the list (v_1, v_2, \ldots, v_n) of vectors spans V, where each $v_i \in V$. Prove that the list

$$(v_1 - v_2, v_2 - v_3, v_3 - v_4, \dots, v_{n-2} - v_{n-1}, v_{n-1} - v_n, v_n)$$

also spans V.

5. Let V be a vector space over \mathbb{F} , and suppose that (v_1, v_2, \ldots, v_n) is a linearly independent list of vectors in V. Given any $w \in V$ such that

$$(v_1+w, v_2+w, \ldots, v_n+w)$$

is a linearly dependent list of vectors in V, prove that $w \in \text{span}(v_1, v_2, \dots, v_n)$.

6. Let V be a finite-dimensional vector space over \mathbb{F} with $\dim(V) = n$ for some $n \in \mathbb{Z}_+$. Prove that there are n one-dimensional subspaces U_1, U_2, \ldots, U_n of V such that

$$V = U_1 \oplus U_2 \oplus \cdots \oplus U_n.$$

- 7. Let V be a finite-dimensional vector space over \mathbb{F} , and suppose that U is a subspace of V for which $\dim(U) = \dim(V)$. Prove that U = V.
- 8. Let $\mathbb{F}_m[z]$ denote the vector space of all polynomials with degree less than or equal to $m \in \mathbb{Z}_+$ and having coefficient over \mathbb{F} , and suppose that $p_0, p_1, \ldots, p_m \in \mathbb{F}_m[z]$ satisfy $p_j(2) = 0$. Prove that (p_0, p_1, \ldots, p_m) is a linearly dependent list of vectors in $\mathbb{F}_m[z]$.
- 9. Let U and V be five-dimensional subspaces of \mathbb{R}^9 . Prove that $U \cap W \neq \{0\}$.
- 10. Let V be a finite-dimensional vector space over \mathbb{F} , and suppose that U_1, U_2, \ldots, U_m are any m subspaces of V. Prove that

 $\dim(U_1 + U_2 + \dots + U_m) \le \dim(U_1) + \dim(U_2) + \dots + \dim(U_m).$