## Homework Set 3: Exercises on Linear Spans and Bases

Directions: Please work on all exercises! Hand in Problems 1 and 2 as your "Calculational Homework" and Problems 5 and 7 as your "Proof-Writing Homework" at the beginning of lecture on January 26, 2007.
As usual, we are using $\mathbb{F}$ to denote either $\mathbb{R}$ or $\mathbb{C}$.

1. Show that the vectors $v_{1}=(1,1,1), v_{2}=(1,2,3)$, and $v_{3}=(2,-1,1)$ are linearly independent in $\mathbb{R}^{3}$. Write the vector $v=(1,-2,5)$ as a linear combination of $v_{1}, v_{2}$, and $v_{3}$.
2. Consider the complex vector space $V=\mathbb{C}^{3}$ and the list $\left(v_{1}, v_{2}, v_{3}\right)$ of vectors in $V$, where $v_{1}=(i, 0,0), v_{2}=(i, 1,0)$, and $v_{3}=(i, i,-1)$. Show that $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)=V$.
3. Find a basis for the subspace $U$ of $\mathbb{R}^{5}$ defined by

$$
U=\left\{\left(x_{1}, x_{2}, \ldots, x_{5}\right) \mid x_{1}=3 x_{2}, x_{3}=7 x_{4}\right\}
$$

4. Let $V$ be a vector space over $\mathbb{F}$, and suppose that the list $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of vectors spans $V$, where each $v_{i} \in V$. Prove that the list

$$
\left(v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, \ldots, v_{n-2}-v_{n-1}, v_{n-1}-v_{n}, v_{n}\right)
$$

also spans $V$.
5. Let $V$ be a vector space over $\mathbb{F}$, and suppose that $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a linearly independent list of vectors in $V$. Given any $w \in V$ such that

$$
\left(v_{1}+w, v_{2}+w, \ldots, v_{n}+w\right)
$$

is a linearly dependent list of vectors in $V$, prove that $w \in \operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
6. Let $V$ be a finite-dimensional vector space over $\mathbb{F}$ with $\operatorname{dim}(V)=n$ for some $n \in \mathbb{Z}_{+}$. Prove that there are $n$ one-dimensional subspaces $U_{1}, U_{2}, \ldots, U_{n}$ of $V$ such that

$$
V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}
$$

7. Let $V$ be a finite-dimensional vector space over $\mathbb{F}$, and suppose that $U$ is a subspace of $V$ for which $\operatorname{dim}(U)=\operatorname{dim}(V)$. Prove that $U=V$.
8. Let $\mathbb{F}_{m}[z]$ denote the vector space of all polynomials with degree less than or equal to $m \in \mathbb{Z}_{+}$and having coefficient over $\mathbb{F}$, and suppose that $p_{0}, p_{1}, \ldots, p_{m} \in \mathbb{F}_{m}[z]$ satisfy $p_{j}(2)=0$. Prove that $\left(p_{0}, p_{1}, \ldots, p_{m}\right)$ is a linearly dependent list of vectors in $\mathbb{F}_{m}[z]$.
9. Let $U$ and $V$ be five-dimensional subspaces of $\mathbb{R}^{9}$. Prove that $U \cap W \neq\{0\}$.
10. Let $V$ be a finite-dimensional vector space over $\mathbb{F}$, and suppose that $U_{1}, U_{2}, \ldots, U_{m}$ are any $m$ subspaces of $V$. Prove that

$$
\operatorname{dim}\left(U_{1}+U_{2}+\cdots+U_{m}\right) \leq \operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)+\cdots+\operatorname{dim}\left(U_{m}\right)
$$

