Homework Set 4: Exercises on Linear Maps

Directions: Please work on all of the following problems! Hand in the Calculational Problems 1 and 2, and the Proof-Writing Problems 6 and 7 at the beginning of lecture on February 2, 2007.

As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C}.

1. Define the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(x+y, x)$.
(a) Show that T is linear.
(b) Show that T is surjective.
(c) Find $\operatorname{dim} n u l l T$.
(d) Find the matrix for T with respect to the canonical basis of \mathbb{R}^{2}.
(e) Show that the map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $F(x, y)=(x+y, x+1)$ is not linear.
2. Consider the complex vector spaces \mathbb{C}^{2} and \mathbb{C}^{3} with their canonical bases. Let S : $\mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ be defined by the matrix

$$
M(S)=A=\left(\begin{array}{ccc}
i & 1 & 1 \\
2 i & -1 & -1
\end{array}\right)
$$

Find a basis for null S.
3. Give an example of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ having the property that

$$
\forall a \in \mathbb{R}, \forall v \in \mathbb{R}, f(a v)=a f(v)
$$

but such that f is not a linear map.
4. Let V and W be vector spaces over \mathbb{F} with V finite-dimensional, and let U be any subspace of V. Given a linear map $S \in \mathcal{L}(U, W)$, prove that there exists a linear map $T \in \mathcal{L}(V, W)$ such that, for every $u \in U, S(u)=T(u)$.
5. Let V and W be vector spaces over \mathbb{F}, and suppose that $T \in \mathcal{L}(V, W)$ is injective. Given a linearly independent list $\left(v_{1}, \ldots, v_{n}\right)$ of vectors in V, prove that the list $\left(T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right)$ is linearly independent in W.
6. Let U, V, and W be vector spaces over \mathbb{F}, and suppose that the linear maps $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$ are both injective. Prove that the composition map $T \circ S$ is also injective.
7. Let V and W be vector spaces over \mathbb{F}, and suppose that $T \in \mathcal{L}(V, W)$ is surjective. Given a spanning list $\left(v_{1}, \ldots, v_{n}\right)$ for V, prove that $\operatorname{span}\left(T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right)=W$.
8. Let V and W be vector spaces over \mathbb{F} with V finite-dimensional. Given $T \in \mathcal{L}(V, W)$, prove that there is a subspace U of V such that

$$
U \cap \operatorname{null}(T)=\{0\} \text { and } \operatorname{range}(T)=\{T(u) \mid u \in U\} .
$$

9. Show that the linear map $T: \mathbb{F}^{4} \rightarrow \mathbb{F}^{2}$ is surjective if

$$
\operatorname{null}(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{F}^{4} \mid x_{1}=5 x_{2}, x_{3}=7 x_{4}\right\} .
$$

10. Show that no linear map $T: \mathbb{F}^{5} \rightarrow \mathbb{F}^{2}$ can have as its null space the set

$$
\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{F}^{5} \mid x_{1}=3 x_{2}, x_{3}=x_{4}=x_{5}\right\}
$$

11. Let V be a vector spaces over \mathbb{F}, and suppose that there is a linear map $T \in \mathcal{L}(V, V)$ such that both null (T) and range (T) are finite-dimensional subspaces of V. Prove that V must also be finite-dimensional.
