Homework Set 7: More Exercises on Eigenvalues

Directions: Please work on all of the following exercises. Submit your solutions to Problems $3(\mathrm{~d})$ and $5(\mathrm{~b})$ as your Calculational Problems and Problems 1 and 2 as your Proof-Writing Problems at the beginning of lecture on February 23, 2007.

As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C}.

1. Let $a, b, c, d \in \mathbb{F}$ and consider the system of equations given by

$$
\begin{aligned}
& a x_{1}+b x_{2}=0 \\
& c x_{1}+d x_{2}=0 .
\end{aligned}
$$

Note that $x_{1}=x_{2}=0$ is a solution for any choice of a, b, c, and d. Prove that this system of equations has a non-trivial solution if and only if $a d-b c=0$.
2. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{F}^{2 \times 2}$, and recall that we can define a linear operator $T \in \mathcal{L}\left(\mathbb{F}^{2}\right)$ on \mathbb{F}^{2} by setting $T(v)=A v$ for each $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in \mathbb{F}^{2}$.

Show that the eigenvalues for T are exactly the $\lambda \in \mathbb{F}$ for which $p(\lambda)=0$, where $p(z)=(a-z)(d-z)-b c$.

Hint: Write the eigenvalue equation $A v=\lambda v$ as $(A-\lambda I) v=0$ and use Problem 1.
3. Find eigenvalues and associated eigenvectors for the linear operators on \mathbb{F}^{2} defined by the following 2×2 matrices:
(a) $\left[\begin{array}{rr}3 & 0 \\ 8 & -1\end{array}\right]$,
(b) $\left[\begin{array}{rr}10 & -9 \\ 4 & -2\end{array}\right]$,
(c) $\left[\begin{array}{ll}0 & 3 \\ 4 & 0\end{array}\right]$,
(d) $\left[\begin{array}{rr}-2 & -7 \\ 1 & 2\end{array}\right]$,
(e) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$,
(f) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Hint: Use Problem 2.
4. For each matrix A below, find eigenvalues for the induced linear operator T on \mathbb{F}^{n} without performing any calculations. Then describe the eigenvectors $v \in \mathbb{F}^{n}$ associated to each eigenvalue λ by looking at solutions to the matrix equation $(A-\lambda I) v=0$, where I denotes the identity map on \mathbb{F}^{n}.
(a) $\left[\begin{array}{rr}-1 & 6 \\ 0 & 5\end{array}\right]$,
(b) $\left[\begin{array}{rrrr}-\frac{1}{3} & 0 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right]$,
(c) $\left[\begin{array}{rrrr}1 & 3 & 7 & 11 \\ 0 & \frac{1}{2} & 3 & 8 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2\end{array}\right]$
5. For each matrix A below, describe the invariant subspaces for the induced linear operator T on \mathbb{F}^{2} that maps each $v \in \mathbb{F}^{2}$ to $T(v)=A v$.
(a) $\left[\begin{array}{rr}4 & -1 \\ 2 & 1\end{array}\right]$,
(b) $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$,
(c) $\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$,
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

