Homework Set 8: Exercises on Inner Product Spaces

Directions: Please work on all of the following exercises and then submit your solutions to the Calculational Problems 1 and 8, and the Proof-Writing Problems 2 and 11 at the beginning of lecture on March 2, 2007.

As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C}. We also use $\langle\cdot, \cdot\rangle$ to denote an arbitrary inner product and $\|\cdot\|$ to denote its associated norm.

1. Let $\left(e_{1}, e_{2}, e_{3}\right)$ be the canonical basis of \mathbb{R}^{3}, and define

$$
\begin{aligned}
f_{1} & =e_{1}+e_{2}+e_{3} \\
f_{2} & =e_{2}+e_{3} \\
f_{3} & =e_{3} .
\end{aligned}
$$

(a) Apply the Gram-Schmidt process to the basis $\left(f_{1}, f_{2}, f_{3}\right)$.
(b) What would you obtain if you applied the Gram-Schmidt process to the basis $\left(f_{3}, f_{2}, f_{1}\right) ?$
2. Let V be a finite-dimensional inner product space over \mathbb{F}. Given any vectors $u, v \in V$, prove that the following two statements are equivalent:
(a) $\langle u, v\rangle=0$
(b) $\|u\| \leq\|u+\alpha v\|$ for every $\alpha \in \mathbb{F}$.
3. Let $n \in \mathbb{Z}_{+}$be a positive integer, and let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$ be any collection of $2 n$ real numbers. Prove that

$$
\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leq\left(\sum_{k=1}^{n} k a_{k}^{2}\right)\left(\sum_{k=1}^{n} \frac{b_{k}^{2}}{k}\right)
$$

4. Prove or disprove the following claim:

Claim. There is an inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{2} whose associated norm $\|\cdot\|$ is given by the formula

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\left|x_{1}\right|+\left|x_{2}\right|
$$

for every vector $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, where $|\cdot|$ denotes the absolute value function on \mathbb{R}.
5. Let V be a finite-dimensional inner product space over \mathbb{R}. Given $u, v \in V$, prove that

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4} .
$$

6. Let V be a finite-dimensional inner product space over \mathbb{C}. Given $u, v \in V$, prove that

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4}+\frac{\|u+i v\|^{2}-\|u-i v\|^{2}}{4} i .
$$

7. Let $\mathcal{C}[-\pi, \pi]=\{f:[-\pi, \pi] \rightarrow \mathbb{R} \mid f$ is continuous $\}$ denote the inner product space of continuous real-valued functions defined on the interval $[-\pi, \pi] \subset \mathbb{R}$, with inner product given by

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x, \text { for every } f, g \in \mathcal{C}[-\pi, \pi] .
$$

Then, given any positive integer $n \in \mathbb{Z}_{+}$, prove that the set of vectors

$$
\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\sin (x)}{\sqrt{\pi}}, \frac{\sin (2 x)}{\sqrt{\pi}}, \ldots, \frac{\sin (n x)}{\sqrt{\pi}}, \frac{\cos (x)}{\sqrt{\pi}}, \frac{\cos (2 x)}{\sqrt{\pi}}, \ldots, \frac{\cos (n x)}{\sqrt{\pi}}\right\}
$$

is orthonormal.
8. Let $\mathbb{R}_{2}[x]$ denote the inner product space of polynomials over \mathbb{R} having degree at most two, with inner product given by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x, \text { for every } f, g \in \mathbb{R}_{2}[x]
$$

Apply the Gram-Schmidt procedure to the standard basis $\left\{1, x, x^{2}\right\}$ for $\mathbb{R}_{2}[x]$ in order to produce an orthonormal basis for $\mathbb{R}_{2}[x]$.
9. Let V be a finite-dimensional inner product space over \mathbb{F}, and let U be a subspace of V. Prove that the orthogonal complement U^{\perp} of U with respect to the inner product $\langle\cdot, \cdot\rangle$ on V satisfies

$$
\operatorname{dim}\left(U^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(U)
$$

10. Let V be a finite-dimensional inner product space over \mathbb{F}, and let U be a subspace of V. Prove that $U=V$ if and only if the orthogonal complement U^{\perp} of U with respect to the inner product $\langle\cdot, \cdot\rangle$ on V satisfies $U^{\perp}=\{0\}$.
11. Let V be a finite-dimensional inner product space over \mathbb{F}, and suppose that $P \in \mathcal{L}(V)$ is a linear operator on V having the following two properties:
(a) Given any vector $v \in V, P(P(v))=P(v)$. I.e., $P^{2}=P$.
(b) Given any vector $u \in \operatorname{null}(P)$ and any vector $v \in \operatorname{range}(P),\langle u, v\rangle=0$.

Prove that P is an orthogonal projection.

