Homework Set 9: Exercises on Orthogonality and Diagonalization

Directions: Please work on all of the problems and submit your solutions to the Calculational Problems 1 and 2, and Proof-Writing Problems 3 and 6 at the beginning of lecture on March 9, 2007.

As usual, we are using \mathbb{F} to denote either \mathbb{R} or \mathbb{C}. We also use $\langle\cdot, \cdot\rangle$ to denote an arbitrary inner product and $\|\cdot\|$ to denote its associated norm. The term "o.n." means orthonormal. A^{*} denotes the conjugate transpose of a matrix $A \in \mathbb{C}^{n \times n}$.

1. Consider \mathbb{R}^{3} with two orthonormal bases: the canonical basis $e=\left(e_{1}, e_{2}, e_{3}\right)$ and the basis $f=\left(f_{1}, f_{2}, f_{3}\right)$, where

$$
f_{1}=\frac{1}{\sqrt{3}}(1,1,1), f_{2}=\frac{1}{\sqrt{6}}(1,-2,1), f_{3}=\frac{1}{\sqrt{2}}(1,0,-1) .
$$

(a) Find the matrix, S, of the change of basis transformation such that

$$
[v]_{f}=S[v]_{e}, \quad \text { for all } v \in \mathbb{R}^{3},
$$

where $[v]_{b}$ denotes the column vector with the coordinates of the vector v in the basis b.
(b) Find the canonical matrix, A, of the linear map $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ with eigenvectors f_{1}, f_{2}, f_{3} and eigenvalues $1,1 / 2,-1 / 2$, respectively.
2. Let $v \in \mathbb{C}^{4}$ be the vector given by $v=(1, i,-1,-i)$. Find the matrix (with respect to the canonical basis on $\left.\mathbb{C}^{4}\right)$ of the orthogonal projection $P \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ such that

$$
\operatorname{null}(P)=\{v\}^{\perp}
$$

3. Let U be the subspace of \mathbb{R}^{3} that coincides with the plane through the origin that is perpendicular to the vector $n=(1,1,1) \in \mathbb{R}^{3}$.
(a) Find an o.n. basis for U.
(b) Find the matrix (with respect to the canonical basis on \mathbb{R}^{3}) of the orthogonal projection $P \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ onto U, i.e., such that range $(P)=U$.
4. For each of the following matrices, verify that A is Hermitian by showing that $A=A^{*}$, find a unitary matrix U such that $U^{-1} A U$ is a diagonal matrix, and compute $\exp (A)$.
(a) $A=\left[\begin{array}{cc}4 & 1-i \\ 1+i & 5\end{array}\right]$
(b) $A=\left[\begin{array}{cc}3 & -i \\ i & 3\end{array}\right]$
(c) $A=\left[\begin{array}{cc}6 & 2+2 i \\ 2-2 i & 4\end{array}\right]$
(d) $A=\left[\begin{array}{cc}0 & 3+i \\ 3-i & -3\end{array}\right]$
(e) $A=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & -1 & -1+i \\ 0 & -1-i & 0\end{array}\right]$
(f) $A=\left[\begin{array}{ccc}2 & \frac{i}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & 2 & 0 \\ \frac{i}{\sqrt{2}} & 0 & 2\end{array}\right]$
5. For each of the following matrices, either find a matrix P (not necessarily unitary) such that $P^{-1} A P$ is a diagonal matrix, or show why no such matrix exists.
(a) $A=\left[\begin{array}{ccc}19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$
(c) $A=\left[\begin{array}{lll}5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5\end{array}\right]$
(d) $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1\end{array}\right]$
(e) $A=\left[\begin{array}{lll}-i & 1 & 1 \\ -i & 1 & 1 \\ -i & 1 & 1\end{array}\right]$
(f) $A=\left[\begin{array}{lll}0 & 0 & i \\ 4 & 0 & i \\ 0 & 0 & i\end{array}\right]$
6. Let V be a finite-dimensional inner product space over \mathbb{C}, and suppose that $T \in \mathcal{L}(V)$ has the property that $T^{*}=-T$. (We call T a skew Hermitian operator on V.)
(a) Prove that the operator $i T \in \mathcal{L}(V)$ defined by $(i T)(v)=i(T(v))$, for each $v \in V$, is Hermitian.
(b) Prove that the canonical matrix for T can be unitarily diagonalized.
(c) Prove that T has purely imaginary eigenvalues.
