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The set C of complex numbers can be described as elegant, intriguing, and fun, but why
are complex numbers important? One possible answer to this question is the Fundamental
Theorem of Algebra. It states that every polynomial equation in one variable with complex
coefficients has at least one complex solution. In other words, polynomial equations formed
over C can always be solved over C. This result has several equivalent formulations in
addition to a myriad of different proofs, one of the first of which was given by the eminent
mathematician Carl Gauss in his doctoral thesis [2].

The aim of these notes is to provide a proof of the Fundamental Theorem of Algebra
using concepts that should be familiar to you from your study of Calculus, and so we begin
by providing an explicit formulation.

Theorem 1 (Fundamental Theorem of Algebra). Given any positive integer n ≥ 1 and any
choice of complex numbers a0, a1, . . . , an, such that an 6= 0, the polynomial equation

anz
n + · · ·+ a1z + a0 = 0 (1)

has at least one solution z ∈ C.

This is a remarkable statement. No analogous result holds for guaranteeing that a real
solution exists to Equation (1) if we restrict the coefficients a0, a1, . . . , an to be real numbers.
E.g., there does not exist a real number x satisfying an equation as simple as x2 + 1 = 0.
Similarly, the consideration of polynomial equations having integer (resp. rational) coeffi-
cients quickly forces us to consider solutions that cannot possibly be integers (resp. rational
numbers). Thus, the complex numbers are special in this respect.

The statement of the Fundamental Theorem of Algebra can also be read as follows: Any
non-constant complex polynomial function defined on the complex plane C (when thought
of as R2) has at least one root, i.e., vanishes in at least one place. It is in this form that we
will provide a proof for Theorem 1.

Given how long the Fundamental Theorem of Algebra has been around, you should
not be surprised that there are many proofs of it. There is even an entire book [1] solely
devoted to exploring the mathematics behind thirteen distinct proofs. Different proofs arise
from attempting to understand the statement of the theorem from the viewpoint of different
branches of mathematics. This quickly leads to many non-trivial interactions with such fields
of mathematics as Real and Complex Analysis, Topology, and (Modern) Abstract Algebra.
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The diversity of proof techniques available is yet another indication of how fundamental and
deep the Fundamental Theorem of Algebra really is.

Like many first courses in Linear Algebra, we could easily be content with just accepting
the statement of the theorem and deferring a discussion of its proof to a more advanced
mathematics course. There is, however, a proof that uses nothing more than ideas that
should be familiar to you from the study of Differential Calculus. How could you not want
to see such a proof now?

To prove the Fundamental Theorem of Algebra, we will need the Extreme Value Theorem
for real-valued functions of two real variables, which we state without proof. In particular,
we formulate this theorem in the restricted case of functions defined on the closed disk D of
radius R > 0 and centered at the origin, i.e., D = {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ R2}.

Theorem 2 (Extreme Value Theorem). Let f : D → R be a continuous function on the
closed disk D ⊂ R2. Then f is bounded and attains its minimum and maximum values on
D. In other words, there exist points xm, xM ∈ D such that

f(xm) ≤ f(x) ≤ f(xM)

for every possible choice of point x ∈ D.

If we define a polynomial function f : C → C by setting f(z) = anz
n + · · ·+ a1z + a0 as

in Equation (1), then note that we can regard (x, y) 7→ |f(x + iy)| as a function R2 → R.
By a mild abuse of notation, we denote this function by |f( · )| or |f |. As it is a composition
of continuous functions (polynomials and the square root), we see that |f | is continuous.

Lemma 3. Let f : C → C be any polynomial function. Then there exists a point z0 ∈ C
where the function |f | attains its minimum value in R.

Proof. If f is a constant polynomial function, then the statement of the Lemma is trivially
true since |f | attains its minimum value at every point in C. So choose, e.g., z0 = 0.

If f is not constant, then the degree of the polynomial defining f is at least 1. In this
case, we can denote f explicitly as in Equation (1). That is, we set

f(z) = anz
n + · · ·+ a1z + a0

with an 6= 0. Now, assume z 6= 0, and set A = max{|a0|, . . . , |an−1|}. We can obtain a lower
bound for |f(z)| as follows:

|f(z)| = |an| |z|n
∣∣1 +

an−1

an

1

z
+ · · ·+ a0

an

1

zn
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≥ |an| |z|n

(
1− A

|an|

∞∑
k=1

1

|z|k
)

= |an| |z|n
(
1− A

|an|
1

|z| − 1

)
.

For all z ∈ C such that |z| ≥ 2, we can further simplify this expression and obtain

|f(z)| ≥ |an| |z|n
(
1− 2A

|an||z|
)
.
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It follows from this inequality that there is an R > 0 such that |f(z)| > |f(0)|, for all z ∈ C
satisfying |z| > R. Let D ⊂ R2 be the disk of radius R centered at 0, and define a function
g : D → R, by

g(x, y) = |f(x + iy)|.

Then g is continuous, and so we can apply Theorem 2 in order to obtain a point (x0, y0) ∈ D
such that g attains it minimum at (x0, y0). By the choice of R we have that for z ∈ C \D,
|f(z)| > |g(0, 0)| ≥ |g(x0, y0)|. Therefore, |f | attains its minimum in z = x0 + iy0.

We now prove the Fundamental Theorem of Algebra.

Proof of Theorem 1. For our argument, we rely on the fact that the function |f | attains its
minimum value by Lemma 3. Let z0 ∈ C be a point where the minimum is attained. We
will show that if f(z0) 6= 0, then z0 is not a minimum, thus proving by contraposition that
the minimum value of |f(z)| is zero. Therefore, f(z0) = 0.

If f(z0) 6= 0, then we can define a new function g : C → C by setting

g(z) =
f(z + z0)

f(z0)
, for all z ∈ C.

Note that g is a polynomial of degree n, and that the minimum of |f | is attained at z0 if and
only if the minimum of |g| is attained at z = 0. Moreover, it is clear that g(0) = 1.

More explicitly, g is given by a polynomial of the form

g(z) = bnz
n + · · ·+ bkz

k + 1,

with n ≥ 1 and bk 6= 0, for some 1 ≤ k ≤ n. Let bk = |bk|eiθ, and consider z of the form

z = r|bk|−1/kei(π−θ)/k, (2)

with r > 0. For z of this form we have

g(z) = 1− rk + rk+1h(r),

where h is a polynomial. Then, for r < 1, we have by the triangle inequality that

|g(z)| ≤ 1− rk + rk+1|h(r)|.

For r > 0 sufficiently small we have r|h(r)| < 1, by the continuity of the function rh(r) and
the fact that it vanishes in r = 0. Hence

|g(z)| ≤ 1− rk(1− r|h(r)|) < 1,

for some z having the form in Equation (2) with r ∈ (0, r0) and r0 > 0 sufficiently small.
But then the minimum of the function |g| : C → R cannot possibly be equal to 1.
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We now conclude these notes with several more fundamental facts about polynomials,
including an equivalence form of the Fundamental Theorem of Algebra. While these facts
should be familiar to you, they nonetheless require careful formulation and proof.

Theorem 4. Given a positive integer n ≥ 1 and any choice of coefficients a0, a1, . . . , an ∈ C,
where an 6= 0, define the function f : C → C by setting

f(z) = anz
n + · · ·+ a1z + a0,∀ z ∈ C.

In other words, f is a polynomial function of degree n. Then

1. given any complex number w ∈ C, we have that f(w) = 0 if and only if there exists a
polynomial function g : C → C of degree n− 1 such that

f(z) = (z − w)g(z),∀ z ∈ C.

2. there are at most n distinct complex numbers w for which f(w) = 0. In other words,
f has at most n distinct roots.

3. (Fundamental Theorem of Algebra, restated) there exist exactly n+1 complex numbers
w0, w1, . . . , wn ∈ C (not necessarily distinct) such that

f(z) = w0(z − w1)(z − w2) · · · (z − wn),∀ z ∈ C.

In other words, every polynomial function with coefficients over C can be factored into
linear factors over C.

Proof.

1. Let w ∈ C be a complex number.

(“=⇒”) Suppose that f(w) = 0. Then, in particular, we have that

anw
n + · · ·+ a1w + a0 = 0.

Since this equation is equal to zero, it follows that, given any z ∈ C,

f(z) = anz
n + · · ·+ a1z + a0 − (anw

n + · · ·+ a1w + a0)

= an(zn − wn) + an−1(z
n−1 − wn−1) + · · ·+ a1(z − w)

= an(z − w)
n−1∑
k=0

zkwn−1−k + an−1(z − w)
n−2∑
k=0

zkwn−2−k + · · ·+ a1(z − w)

= (z − w)
n∑

m=1

(
am

m−1∑
k=0

zkwm−k

)
.
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Thus, upon setting

g(z) =
n∑

m=1

(
am

m−1∑
k=0

zkwm−k

)
,∀ z ∈ C,

we have constructed a degree n− 1 polynomial function g such that

f(z) = (z − w)g(z),∀ z ∈ C.

(“⇐=”) Suppose that there exists a polynomial function g : C → C of degree n − 1
such that

f(z) = (z − w)g(z),∀ z ∈ C.

Then it follows that f(w) = (w − w)g(w) = 0, as desired.

2. We use induction on the degree n of f .

If n = 1, then f(z) = a1z + a0 is a linear function, and the equation a1z + a0 = 0 has
the unique solution z = −a0/a1. Thus, the result holds for n = 1.

Now, suppose that the result holds for n − 1. In other words, assume that every
polynomial function of degree n− 1 has at most n− 1 roots. Using the Fundamental
Theorem of Algebra (Theorem 1), we know that there exists a complex number w ∈ C
such that f(w) = 0. Moreover, from Part 1 above, we know that there exists a
polynomial function g of degree n− 1 such that

f(z) = (z − w)g(z),∀ z ∈ C.

It then follows by the induction hypothesis that g has at most n−1 distinct roots, and
so f must have at most n distinct roots.

3. This part follows from an induction argument on n that is virtually identical to that
of Part 2, and so the proof is left as an exercise to the reader.
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