Change of Bases

Isaiah Lankham, Bruno Nachtergaele, Anne Schilling

(March 8, 2007)

We have seen in previous lectures that linear operators on an n dimensional vector space are in one-to-one correspondence with $n \times n$ matrices. This correspondence depends on the choice of basis for the vector space, however. In this lecture we address the question how the matrix for a linear operator changes if we change from one orthonormal basis to another.

1 Coordinate vectors

Let V be a finite-dimensional inner product space with inner product $\langle\cdot, \cdot\rangle$ and dimension $\operatorname{dim} V=n$. Then V has an orthonormal basis $e=\left(e_{1}, \ldots, e_{n}\right)$. As we have seen in a previous lecture we can write every $v \in V$ as

$$
v=\sum_{i=1}^{n}\left\langle v, e_{i}\right\rangle e_{i} .
$$

This induces a map

$$
\begin{aligned}
{[\cdot]_{e}: V } & \rightarrow \mathbb{F}^{n} \\
v & \mapsto\left[\begin{array}{c}
\left\langle v, e_{1}\right\rangle \\
\vdots \\
\left\langle v, e_{n}\right\rangle
\end{array}\right]
\end{aligned}
$$

which maps the vector $v \in V$ to the $n \times 1$ column vector of its coordinates with respect to the basis e. The column vector $[v]_{e}$ is also called the coordinate vector of v with respect to the basis e.

Furthermore, the map $[\cdot]_{e}$ is an isomorphism (meaning that it is an injective and surjective linear map). On \mathbb{F}^{n} we have the usual inner product defined as

$$
\langle x, y\rangle_{\mathbb{F}^{n}}=\sum_{k=1}^{n} x_{k} \bar{y}_{k} .
$$

[^0]The map $[\cdot]_{e}$ preserves the inner product, that is,

$$
\langle v, w\rangle_{V}=\left\langle[v]_{e},[w]_{e}\right\rangle_{\mathbb{F}^{n}} \quad \text { for all } v, w \in V,
$$

since

$$
\begin{aligned}
\langle v, w\rangle_{V}=\sum_{i, j=1}^{n}\left\langle\left\langle v, e_{i}\right\rangle e_{i},\left\langle w, e_{j}\right\rangle e_{j}\right\rangle & =\sum_{i, j=1}^{n}\left\langle v, e_{i}\right\rangle \overline{\left\langle w, e_{j}\right\rangle}\left\langle e_{i}, e_{j}\right\rangle \\
& =\sum_{i, j=1}^{n}\left\langle v, e_{i}\right\rangle \overline{\left\langle w, e_{j}\right\rangle} \delta_{i j}=\sum_{i=1}^{n}\left\langle v, e_{i}\right\rangle \overline{\left\langle w, e_{i}\right\rangle}=\left\langle[v]_{e},[w]_{e}\right\rangle_{\mathbb{F}^{n}} .
\end{aligned}
$$

It is important to remember that the map $[\cdot]_{e}$ depends on the choice of basis $e=\left(e_{1}, \ldots, e_{n}\right)$.

2 Change of basis transformation

Recall that we can associate a matrix $A \in \mathbb{F}^{n \times n}$ to every operator $T \in \mathcal{L}(V, V)$. More precisely, the j-th column of the matrix $A=M(T)$ with respect to a basis $e=\left(e_{1}, \ldots, e_{n}\right)$ is obtained by expanding $T e_{j}$ in terms of the basis e. If the basis e is orthonormal, the coefficient of e_{i} is just the inner product of the vector with e_{i}. Hence

$$
M(T)=\left(\left\langle T e_{j}, e_{i}\right\rangle\right)_{1 \leq i, j \leq n}
$$

where i is the row index and j is the column index of the matrix.
Conversely, if $A \in \mathbb{F}^{n \times n}$ is a matrix, then we can associate to it a linear operator $T \in$ $\mathcal{L}(V, V)$ by

$$
\begin{aligned}
T v & =\sum_{j=1}^{n}\left\langle v, e_{j}\right\rangle T e_{j}=\sum_{j=1}^{n} \sum_{i=1}^{n}\left\langle T e_{j}, e_{i}\right\rangle\left\langle v, e_{j}\right\rangle e_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j}\left\langle v, e_{j}\right\rangle\right) e_{i}=\sum_{i=1}\left(A[v]_{e}\right)_{i} e_{i}
\end{aligned}
$$

where $\left(A[v]_{e}\right)_{i}$ denotes the i-th component of the column vector $A[v]_{e}$. With this construction we have $M(T)=A$. The coefficients of $T v$ in the basis $\left(e_{1}, \ldots, e_{n}\right)$ are recorded by the column vector obtained by multiplying the $n \times n$ matrix A with the $n \times 1$ column vector $[v]_{e}$ with components $v_{j}=\left\langle v, e_{j}\right\rangle$.

Example 1. Let

$$
A=\left[\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right]
$$

With respect to the canonical basis we can define $T \in \mathcal{L}(V, V)$.

$$
T\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
z_{1}-i z_{2} \\
i z_{1}+z_{2}
\end{array}\right] .
$$

Suppose that we want to use another orthonormal basis $f=\left(f_{1}, \ldots, f_{n}\right)$ of V. Then as before we have $v=\sum_{i=1}^{n}\left\langle v, f_{i}\right\rangle f_{i}$. Comparing this with $v=\sum_{j=1}^{n}\left\langle v, e_{j}\right\rangle e_{j}$ we find

$$
v=\sum_{i, j=1}^{n}\left\langle\left\langle v, e_{j}\right\rangle e_{j}, f_{i}\right\rangle f_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left\langle e_{j}, f_{i}\right\rangle\left\langle v, e_{j}\right\rangle\right) f_{i} .
$$

Hence

$$
[v]_{f}=S[v]_{e},
$$

where

$$
S=\left(s_{i j}\right)_{i, j=1}^{n} \quad \text { with } s_{i j}=\left\langle e_{j}, f_{i}\right\rangle
$$

The j-th column of S is given by the coefficients of the expansion of e_{j} in terms of the basis $f=\left(f_{1}, \ldots, f_{n}\right)$. The matrix S describes a linear map in $\mathcal{L}\left(\mathbb{F}^{n}\right)$ which is called the change of basis transformation.

We may also interchange the role of the bases e and f. In this case we obtain the matrix $R=\left(r_{i j}\right)_{i, j=1}^{n}$ where

$$
r_{i j}=\left\langle f_{j}, e_{i}\right\rangle .
$$

Then by the uniqueness of the expansion in a basis we obtain

$$
[v]_{e}=R[v]_{f}
$$

so that

$$
R S[v]_{e}=[v]_{e} \quad \text { for all } v \in V .
$$

Since this equation is true for all $[v]_{e} \in \mathbb{F}^{n}$ it follows that $R S=I$ is the identity or $R=S^{-1}$. In particular, S and R are invertible. We can also check this explicitly by using the properties of orthonormal bases. Namely

$$
\begin{aligned}
(R S)_{i j} & =\sum_{k=1}^{n} r_{i k} s_{k j}=\sum_{k=1}^{n}\left\langle f_{k}, e_{i}\right\rangle\left\langle e_{j}, f_{k}\right\rangle \\
& =\sum_{k=1}^{n}\left\langle e_{j}, f_{k}\right\rangle \overline{\left\langle e_{i}, f_{k}\right\rangle}=\left\langle\left[e_{j}\right]_{f},\left[e_{i}\right]_{f}\right\rangle_{\mathbb{F}^{n}}=\delta_{i j} .
\end{aligned}
$$

The matrices S (and also R) have the interesting property that their columns (and rows) are orthonormal, since they are the coordinates of orthonormal vectors in another orthonormal
basis.
Example 2. Let $V=\mathbb{C}^{2}$ and choose the orthonormal bases $e=\left(e_{1}, e_{2}\right)$ and $f=\left(f_{1}, f_{2}\right)$ with

$$
\begin{aligned}
e_{1} & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] & e_{2} & =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
f_{1} & =\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] & f_{2} & =\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

Then

$$
S=\left[\begin{array}{ll}
\left\langle e_{1}, f_{1}\right\rangle & \left\langle e_{2}, f_{1}\right\rangle \\
\left\langle e_{1}, f_{2}\right\rangle & \left\langle e_{2}, f_{2}\right\rangle
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

and

$$
R=\left[\begin{array}{ll}
\left\langle f_{1}, e_{1}\right\rangle & \left\langle f_{2}, e_{1}\right\rangle \\
\left\langle f_{1}, e_{2}\right\rangle & \left\langle f_{2}, e_{2}\right\rangle
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

One can check explicitly that indeed

$$
R S=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

So far we have discussed how the coordinate vectors of a given vector $v \in V$ change under the change of basis from e to f. The next question we can ask is how the matrix $M(T)$ of an operator $T \in \mathcal{L}(V)$ changes if we change the basis. Let A be the matrix of T with respect to the basis $e=\left(e_{1}, \ldots, e_{n}\right)$ and let B be the matrix for T with respect to the basis $f=\left(f_{1}, \ldots, f_{n}\right)$. Can we determine B from A ? Note that

$$
[T v]_{e}=A[v]_{e}
$$

so that

$$
[T v]_{f}=S[T v]_{e}=S A[v]_{e}=S A R[v]_{f}=S A S^{-1}[v]_{f}
$$

This implies that

$$
B=S A S^{-1}
$$

Example 3. Continuing Example 2, let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

be the matrix of a linear operator with respect to the basis e. Then the matrix B with
respect to the basis f is given by

$$
B=S A S^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] .
$$

[^0]: Copyright (c) 2007 by the authors. These lecture notes may be reproduced in their entirety for noncommercial purposes.

