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1 From Linear Systems to Linear Maps

We begin these notes by reviewing several different conventions for denoting and studying
systems of linear equations. The most fundamental of these convention involves encoding the
linear system as a single matrix equation. This point of view has a long history of exploration,
and numerous computational devices — including several computer programming languages
— have been developed and optimized specifically for analyzing matrix equations. From the
viewpoint of understanding linear systems abstractly, though, we will see that this encoding
has the advantage of allowing us to further reinterpret questions about the linear system as
questions about a linear map that is uniquely determined by the linear system.

1.1 From Linear Systems to Matrix Equations

Let m, n ∈ Z+ be positive integers. Then a system of m linear equations in n unknowns
x1, . . . , xn looks like

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm




(1)

where each aij , bi ∈ F is a scalar for i = 1, 2, . . . , m and j = 1, 2, . . . , n. In other words, each
scalar b1, . . . , bm ∈ F is being written as a linear combination of the unknowns x1, . . . , xn

using coefficients from the field F. Since the left-hand side of each equation is a linear sum,
it is common to write System (1) using somewhat more compactly notation such as

n∑
k=1

a1kxk = b1,
n∑

k=1

a2kxk = b2,
n∑

k=1

a3kxk = b3, . . . ,
n∑

k=1

amkxk = bm. (2)
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To solve System (1) means to describe the set of all possible values for x1, . . . , xn (when
thought of as scalars in F) such that each of the m equations in System (1) is satisfied
simultaneously. If we use A = (aij) ∈ F

m×n to denote the m×n coefficient matrix associated
to the linear system and x = (xi) to denote the n×1 column vector composed of the unknowns
x1, . . . , xn, then this is equivalent to describing the set of all vectors x ∈ F

n satisfying the
single matrix equation

Ax =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn







x1

x2
...

xn


 =




a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

am1x1 + am2x2 + · · ·+ amnxn


 =




b1
...

bm


 = b (3)

where we have used b ∈ F
m to denote the m× 1 column vector formed from the right-hand

sides of the equations in System (1).
It is important to note that Equation (3) differs from Systems (1) and (1) only in terms

of notation. However, it is nonetheless a significantly more flexible point of view for un-
derstanding systems of linear equations. One common approach is to reinterpret solving
Equation (3) as the equivalent problem of describing all coefficients x1, . . . , xn ∈ F for which
the following vector equation is satisfied:

x1




a11

a21

a31
...

am1




+ x2




a12

a22

a32
...

am2




+ x3




a13

a23

a33
...

am3




+ · · ·+ xn




a1n

a2n

a3n
...

amn




=




b1

b2

b3
...

bm




.

This approach emphasizes analysis of properties of the column vectors A(·,j) (j = 1, . . . , n)
of the coefficient matrix A in the matrix equation Ax = b. However, for the purposes of
these notes, it is preferable to view solving Equation (3) as a question about the linear map
T ∈ L(Fn, Fm) having so-called canonical matrix A, as explained in the next section.

1.2 The Canonical Matrix of a Linear Map

Let m, n ∈ Z+ be positive integers. Then, given a choice of bases for the vector spaces F
n

and F
m, there is a duality between matrices and linear maps. In other words, as discussed

in the Notes on Linear Maps, every linear map in the set L(Fn, Fm) uniquely corresponds
to exactly one m × n matrix in F

m×n. However, you should not take this to mean that
matrices and linear maps are interchangeable or indistinguishable ideas. By itself, a matrix
in the set F

m×n is nothing more than a collection of mn scalars that have been arranged in
a rectangular shape. It is only when a matrix appears as part of some larger context that
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the theory of linear maps becomes applicable. In particular, one can gain insight into the
solutions of matrix equation when the coefficient matrix is viewed as the matrix associated
to a linear map under a convenient choice of bases for F

n and F
m.

Given a positive integer, k ∈ Z+, one particularly convenient choice of basis for F
k is the

so-called standard basis (a.k.a. the canonical basis) e1, e2, . . . , ek, where each ei is the k-tuple
having zeros for each of its component other than in the ith position:

ei = (0, 0, . . . , 0, 1, 0, . . . , 0).

↑
i

Then, taking the vector spaces F
n and F

m under their canonical bases, we say that the
matrix A ∈ F

m×n associated to the linear map T ∈ L(Fn, Fm) is the canonical matrix for T .
One reason for this choice of basis is that it gives us the particularly nice formula

T (x) = Ax, ∀x ∈ F
n. (4)

In other words, one can compute the action of the linear map upon any vector in F
n by simply

multiplying the vector by the associated canonical matrix A. There are many circumstances
in which one might wish to use non-standard bases for either F

n or F
m, but the trade-off

is that Equation (4) will no longer hold as stated. (To modify Equation (4) for use with
non-standard bases, one needs to use coordinate vectors, per the Notes on Change of Bases.)

The utility of Equation (4) cannot be overly emphasized. To get a sense of this, consider
once again the generic matrix equation (Equation (3))

Ax = b,

which involves a given matrix A = (aij) ∈ F
m×n, a given vector b ∈ F

m, and the n-tuple
of unknowns x. To provide a solve to this equation means to provide a vector x ∈ F

n for
which the matrix product Ax is exactly the vector b. In light of Equation (4), the question
of whether such a vector x ∈ F

n exists is equivalent to asking whether or not the vector b is
in the range of the linear map T .

While the encoding of System (1) into Equation (3) might be considered a matter of mere
notational equivocation, the above reinterpretation of Equation (3) using linear maps is a
genuine change of viewpoint. Solving System (1) (and thus Equation (3)) essentially amounts
to understanding how m distinct objects interact in an ambient space having n-dimensions.
(In particular, solutions to System (1) correspond to the points of intersect of m hyperplanes
in F

n.) On the other hand, questions about a linear map genuinely involve understanding a
single object, i.e., the linear map itself. Such a point of view is both extremely flexible and
extremely fruitful, as we will see in the sections below.
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2 Solving Linear Systems

2.1 Factorizing Matrices using Gaussian Elimination

Many uses of matrices in Applied Mathematics rely on algorithms that factorize a single
matrix into the product of two or more matrices, each of which has some desirable property.
In this section, we discuss a particularly fundamental and computationally significant fac-
torization for matrices that is known as Gaussian elimination. As a factorization algorithm,
Gaussian elimination can be used to express any matrix as a product involving one matrix
in so-called reduced row-echelon form and one or more so-called elementary matrices. More-
over, the underlying technique for arriving at this factorization is essentially an extension of
the techniques already familiar to you for solving small systems of linear equations by hand.

Let m, n ∈ Z+ denote positive integers, and suppose that A ∈ F
m×n is an m× n matrix

over F. Then, following the Notes on Matrices and Matrix Operations, recall the notation
A(i,·) and A(·,j) for the row vectors and column vectors of A, respectively. In other other
words, for i = 1, . . . , m and j = 1, . . . , n,

A(i,·) =
[
ak1, · · · , aks

] ∈ F
1×s and A(·,j) =




a1�
...

ar�


 ∈ F

r×1.

We will make extensive use of this notational decomposition of a matrix in the following
series of definitions.

Definition 2.1. Let A ∈ F
m×n be an m × n matrix over F. Then we say that A is in

row-echelon form (abbreviated REF ) if the row vectors of A satisfy the following conditions:

(1) either A(1,·) is the zero vector or the first non-zero entry (when read from left to right)
is a one.

(2) for i = 1, . . . , m, if any row vector A(i,·) is the zero vector, then each subsequent row
vector A(i+1,·), . . . , A(m,·) is also the zero vector.

(3) for i = 2, . . . , m, if some A(i,·) is not the zero vector, then the first non-zero entry (when
read from left to right) is a one and occurs to the right of the initial one in A(i−1,·).

The initial leading one in each non-zero row is called a pivot. We furthermore say that A is
in reduced row-echelon form (abbreviated RREF ) if

(4) for each column vector A(·,j) containing a pivot (j = 2, . . . , n), the pivot is the only
non-zero element in A(·,j).
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The motivation behind Definition 2.1 is that matrix equations having their coefficient
matrix in RREF (and, in some sense, also REF) are particularly easy to solve. Note, in
particular, that the only square matrix in RREF without zero rows is the identity matrix.

Example 2.2. The following matrices are all in REF:

A1 =




1 1 1 1
0 1 1 1
0 0 1 1


 , A2 =




1 1 1 0
0 1 1 0
0 0 1 0


 , A3 =




1 1 0 1
0 1 1 0
0 0 0 1


 , A4 =




1 1 0 0
0 0 1 0
0 0 0 1


 ,

A5 =




1 0 1 0
0 0 0 1
0 0 0 0


 , A6 =




0 0 1 0
0 0 0 1
0 0 0 0


 , A7 =




0 0 0 1
0 0 0 0
0 0 0 0


 , A8 =




0 0 0 0
0 0 0 0
0 0 0 0


 .

However, of these, only A4 through A8 are in RREF as you should verify. Moreover, if we
take the transpose of each of these matrices, then only AT

6 , AT
7 , and AT

8 are in RREF.

Example 2.3.

1. Consider the following matrix in RREF:

A =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Given any vector b =
[
b1, b2, b3, b4

]T ∈ F
4, the matrix equation Ax = b corresponds

to the system of equations

x1 = b1

x2 = b2

x3 = b3

x4 = b4




.

Since A is in RREF (in fact, A = I4 is the 4× 4 identity matrix), we can immediately
conclude that the matrix equation Ax = b has the solution x = b for any choice of b,
and, moreover, this is the only possible solution.

2. Consider the following matrix in RREF:

A =




1 6 0 0 4 −2
0 0 1 0 3 1
0 0 0 1 5 2
0 0 0 0 0 0


 .
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Given any vector b =
[
b1, b2, b3, b4

]T ∈ F
4, the matrix equation Ax = b corresponds

to the system of equations

x1 + 6x2 + 4x5 − 2x6 = b1

x3 + 3x5 + x6 = b2

x4 + 5x5 + 2x6 = b3

0 = b4




.

Since A is in RREF, we can immediately conclude a number of facts about solutions
to this system. First of all, solutions exist if and only if b4 = 0. Moreover, by “solving
for the pivots”, we see that the system reduces to

x1 = b1 −6x2 − 4x5 + 2x6

x3 = b2 − 3x5 − x6

x4 = b3 − 5x5 − 2x6


 .

In this context, x1, x3, and x4 are called leading variable since these are the variable
corresponding to the pivots in A. We similarly call x2, x5, and x6 free variables since the
leading variables have been expressed in terms of these remaining variable. Moreover,
given any scalars α, β, γ ∈ F, it follows that the vector

x =




x1

x2

x3

x4

x6

x6




=




b1 − 6α− 4β + 2γ
α

b2 − 3β
b3 − 5β − 2γ

β
γ




=




b1

0
b2

b3

0
0




+




−6α
α
0
0
0
0




+




4β
0
−3β
−5β
β
0




+




2γ
0
0
−2γ

0
γ




must satisfy the matrix equation Ax = b. One can also verify that every solution to
the matrix equation must be of this form. In then follows that the set of all solutions
should somehow be “three dimensional”. In fact, as we will see in the sections below,
the set of solutions is a so-called affine subspace of F

6. In other words, it is the set of

all vectors obtained by adding the vector
[
b1, 0, b2, b3, 0, 0

]T
to every vector in

null(T), where null(T) is the subspace

{
(x1, x2, x3, x4, x5, x6) ∈ F

6 | x1 = −6x2 − 4x5 + 2x6, x3 = −3x5 − x6, x4 = −5x5 − 2x6

}

and T is the linear map having canonical matrix A.

As the above examples illustrate, a matrix equation having coefficient matrix in RREF
corresponds to a system of equations that can be solved with only a small amount of com-
putation. Somewhat amazingly, any matrix can be factored into a product that involves
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exactly one matrix in RREF and one or more of the matrices defined as follows.

Definition 2.4. A square matrix E ∈ F
m×m is called an elementary matrix if it has one of

the following forms:

1. (row exchange matrix) E is obtained from the identity matrix Im by interchanging the

row vectors I
(r,·)
m and I

(s,·)
m , for some choice of positive integers 1 ≤ r, s ≤ m. I.e., in

the case that r < s,

E =




1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 1 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1




← rth row

← sth row.

2. (row scaling matrix) E is obtained from the identity matrix Im by replacing the row

vector I
(r,·)
m with αI

(r,·)
m for some choice of scalar α ∈ F and some choice of positive

integer 1 ≤ r ≤ m. I.e.,

E = Im + (α− 1)Err =




1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 α 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 1




← rth row

where Err is the standard basis vector for the vector space F m×m having all entries
zero except for the value one as the “r, r entry”.

3. (row combination matrix) E is obtained from the identity matrix Im by replacing the
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row vector I
(r,·)
m with I

(r,·)
m + αI

(s,·)
m for some choice of scalar α ∈ F and some choice of

positive integers 1 ≤ r, s ≤ m. I.e., in the case that r < s,

E = Im + αErs =




1 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 0 1 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1 0 0 · · · 0 0 0 · · · 0
0 0 0 · · · 0 1 0 · · · 0 α 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 1




← rth row

↑
jth column

where Ers is the standard basis vector for the vector space F m×m having all entries
zero except for the value one as the “r, s entry”.

The “elementary” in the name “elementary matrix” comes from the correspondence be-
tween these matrices and so-called “elementary operations” on systems of equations. In
particular, each of the elementary matrices are clearly invertible, just as each “elementary
operation” is itself reversible. We illustrate this correspondence in the following example.

Example 2.5. Define A, x, and b by

A =




2 5 3
1 2 3
1 0 8


 , x =




x1

x2

x3


 , and b =




4
5
9


 .

We illustrate the correspondence between elementary matrices and “elementary” operations
on a system of equations as follows.

System of Equations Corresponding Matrix Equation

2x1 + 5x2 + 3x3 = 5
x1 + 2x2 + 3x3 = 4
x1 + 8x3 = 9

Ax = b
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Now, to begin solving this system, one might want to either multiply the first equation
through by 1/2 or interchange the first equation with one of the other equations. From
a computational perspective, it is preferable to perform an interchange since multiplying
through by 1/2 would unnecessarily introduce fractions. Thus, we choose to interchange the
first and second equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4
2x1 + 5x2 + 3x3 = 5
x1 + 8x3 = 9

E0Ax = E0b, where E0 =




0 1 0
1 0 0
0 0 1


 .

Another reason for performing the above interchange is that it now allows us to use “row
combination” operations in order to eliminate the variable x1 from all but one of the equa-
tions. In particular, we can multiply the first equation through by −2 and add it to the
second equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4
x2 − 3x3 = −3

x1 + 8x3 = 9

E1E0Ax = E1E0b, where E1 =




1 0 0
−2 1 0
0 0 1


 .

Similarly, in order to eliminate the variable x1 from the third equation, we would next mul-
tiply the first equation through by −1 and add it to the third equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4
x2 − 3x3 = −3

−2x2 + 5x3 = 5
E2E1E0Ax = E2E1E0b, where E2 =




1 0 0
0 1 0
−1 0 1


 .

Now that the variable x1 only appears in the first equation, we can similarly isolate the
variable x2 by multiply the second equation through by 2 and add it to the third equation
in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4
x2 − 3x3 = −3

−x3 = −1
E3 · · ·E0Ax = E3 · · ·E0b, where E3 =




1 0 0
0 1 0
0 2 1


 .

Finally, in order to complete the process of transforming the coefficient matrix so that it is
in REF, we need only rescale row three by −1. This corresponds to multiplying the third
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equation through by −1 in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4
x2 − 3x3 = −3

x3 = 1
E4 · · ·E0Ax = E4 · · ·E0b, where E4 =




1 0 0
0 1 0
0 0 −1


 .

Now that the coefficient matrix is in REF, we can actually solve for the variables x1, x2, and
x3 using a process called back substitution. In other words, it should be clear from the third
equation that

x3 = 1.

Using this value and solving for x2 in the second equation, it then follows that

x2 = −3 + 3x3 = −3 + 3 = 0.

Similarly, by solving the first equation for x1, it follows that

x1 = 4− 2x2 − 3x3 = 4− 3 = 1.

From a computational perspective, this process of back substitution can be applied to
solve any system of equations when the coefficient matrix of the corresponding matrix equa-
tion is in REF. However, from an algorithmic perspective, it is often more useful to continue
“row reducing” the coefficient matrix in order to produce a matrix in full RREF.

Here, there are several next natural step that we could perform in order to move toward
RREF. Since above we worked “from the top down, from left to right”, we choose to now
work “from bottom up, from right to left”. In other words, the first step now is to multi-
ply the third equation through by 3 and then add it to the second equation in order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 + 3x3 = 4
x2 = 0

x3 = 1
E5 · · ·E0Ax = E5 · · ·E0b, where E5 =




1 0 0
0 1 3
0 0 1


 .

Next, we can multiply the third equation through by −3 and add it to the first equation in
order to obtain

System of Equations Corresponding Matrix Equation

x1 + 2x2 = 1
x2 = 0

x3 = 1
E6 · · ·E0Ax = E6 · · ·E0b, where E6 =




1 0 −3
0 1 0
0 0 1


 .
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Finally, we can multiply the second equation through by −2 and add it to the first equation
in order to obtain

System of Equations Corresponding Matrix Equation

x1 = 1
x2 = 0

x3 = 1
E7 · · ·E0Ax = E7 · · ·E0b, where E7 =




1 −2 0
0 1 0
0 0 1


 .

Now it should be extremely clear that we obtained a correct solution using back substitution
above. However, in many applications, it is not enough to merely find a solution. Instead,
it is important either to verify that there are no other solutions or to describe the affine
subspace containing all solutions as in Example 2.3(2).

To verify that this is the only solution, we appeal to the theory of linear maps. In
particular, let T ∈ L(F3, F3) be the linear map having canonical matrix A. Then, as discussed
in Section 1.2, solving the original matrix equation Ax = b corresponds to asking whether
or not the vector b ∈ F

3 is in the range of the T .
In order to answer this corresponding question regarding the range of T , we take a closer

look at the following expression obtained from the above analysis:

E7E6 · · ·E1E0A = I3 =⇒ A = E−1
0 E−1

1 · · ·E−1
7 I3,

where we have used the fact that each elementary matrices E0, . . . , E7 is invertible in order
to “solve” for A. In effect, this has factored A into the product of eight elementary matrices
and one matrix in RREF. Moreover, from the linear map point of view, we have obtained
the factorization

T = S7 ◦ S6 ◦ · · · ◦ S0

where Si is the (invertible) linear map having canonical matrix E−1
i for i = 0, . . . , 7.

This factorization of the linear map T into a composition of invertible linear maps fur-
thermore implies that T itself is invertible. In particular, T is surjective, and so b must be an
element of the range of T . Moreover, T is also injective, and so b has exactly one pre-image.
Thus, the above solution to the matrix equation Ax = b must also be unique.

Finally, we note that this analysis allows us to also conclude that the inverse of T has
canonical matrix

A−1 = E7E6 · · ·E1E0 =




13 −5 −3
−40 16 9
5 −2 1


 .

Having computed this product, one could essentially “reuse” much of the above computation
in order to solve the matrix equation Ax = b′ for several different right-hand sides b′ ∈ F

3.
The process of “resolving” a linear system is a common practice in Applied Linear Algebra.
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2.2 Solving Homogenous Linear Systems

In this section, we study solutions for an important special case of linear systems, namely
homogeneous systems. As we will see in the next section, though, the theory of solving
homogeneous systems lies at the heart of techniques for solving any linear system.

As usual, we use m, n ∈ Z+ to denote arbitrary positive integers.

Definition 2.6. The system of linear equations System (1) is called a homogeneous system
if the right-hand side of each equation is zero. In other words, a homogeneous system
corresponds to a matrix equation of the form

Ax = 0

where A ∈ F
m×n is an m× n matrix and x is an n-tuple of unknowns.

In particular, based upon the discussion in Section 1.2, it should be clear that solving
a homogeneous system corresponds to describing the null space null(T ) of the linear map
T ∈ L(Fn, Fm) having canonical matrix A, where null(T ) is a subspace of F

n. In describing
null(T ), there are three important cases to keep in mind:

Definition 2.7. The system of linear equations System (1) is called

1. overdetermined if m > n.

2. square if m = n.

3. underdetermined if m < n.

For your own practice, you should provide a proof of the following theorem using the
theory of linear maps.

Theorem 2.8. Every homogeneous system of linear equations has a solution, namely the
zero vector. Moreover, every underdetermined homogenous has infinitely many solution.

We call the zero vector the trivial solution of a homogeneous linear system. The fact that
every homogeneous linear system has the trivial solution is equivalent to the fact that the
image of the zero vector under any linear map always results in the zero vector. Thus, solving
a homogenous linear system reduces to determining if solutions other than the trivial solution
exist. Furthermore, determining whether or not the trivial solution is unique then becomes
a dimensionality question from the linear map point of view.

One method for studying the null space of a linear map is to first use Gaussian elimination
(as demonstrated in Example 2.5) in order to factor the canonical matrix of the linear
map. Then, because the corresponding system of equations is homogeneous, the RREF
matrix obtained will have the same solutions as the original matrix equation. Thus, it
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suffices to study the null space of the linear map corresponding to this RREF matrix. This
simplification is valid because each elementary matrices obtained when factoring a matrix
via Gaussian elimination is invertible. In other words, if a given matrix A satisfies

EkEk−1 · · ·E0A = A0,

where each Ei an elementary matrix and A0 is an RREF matrix, then the matrix equation
Ax = 0 has the exact same solution set as A0x = 0 since

E−1
0 E−1

1 · · ·E−1
7 0 = 0.

Put another way, if T is the linear map having canonical matrix A and T0 is the linear map
having canonical matrix A0, then null(T ) = null(T0).

In the following examples, we illustrate the process of determining the null space for a
linear map having associated matrix in RREF.

Example 2.9.

1. Consider the matrix equation Ax = 0, where A is the matrix given by

A =




1 0 0
0 1 0
0 0 1
0 0 0


 .

This corresponds to an overdetermined homogeneous system of linear equations. More-
over, since there are no free variables (as defined in Example 2.3), it should be clear
that this system has only the trivial solution.

2. Consider the matrix equation Ax = 0, where A is the matrix given by

A =




1 0 1
0 1 1
0 0 0
0 0 0


 .

This corresponds to an overdetermined homogeneous system of linear equations. Unlike
the above example, we see that x3 is a free variable for this system. Thus, denoting by
T the linear map having canonical matrix A, one can solve for the leading variables x1

and x2 (as illustrated in Example 2.3) in order to obtain null(T ) as the one-dimensional
subspace of F

3 given by

null(T ) =
{
(x1, x2, x3) ∈ F

3 | x1 = −x3, x2 = −x3

}
.
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3. Consider the matrix equation Ax = 0, where A is the matrix given by

A =




1 1 1
0 0 0
0 0 0


 .

This corresponds to a square homogeneous system of linear equations with two free
variables. Thus, as above, we denote by T the linear map having canonical matrix A
and solve for the leading variable x1 in order to obtain null(T ) as the two-dimensional
subspace of F

3 given by

null(T ) =
{
(x1, x2, x3) ∈ F

3 | x1 + x2 + x3 = 0
}

.

2.3 Solving Inhomogeneous Linear Systems

In this section, we conclude our study of solutions for linear systems by relating the analysis
of the general case to the analysis of homogeneous system as discussed in the previous section.
In particular, we will see that it takes little more work to solve a general linear system than
it does to solve a homogeneous one.

As usual, we use m, n ∈ Z+ to denote arbitrary positive integers.

Definition 2.10. The system of linear equations System (1) is called an inhomogeneous sys-
tem if the right-hand side of at least one equation is not zero. In other words, a homogeneous
system corresponds to a matrix equation of the form

Ax = b

where A ∈ F
m×n is an m × n matrix, x is an n-tuple of unknowns, and b ∈ F

m is a vector
having at least one non-zero component.

As illustrated in Example 2.3 above, the set of solutions to an inhomogeneous system
of linear equations does not form a subspace of F

n. Instead, given any non-zero vector
b ∈ F

m, the set of all solutions to Ax = b consists of the set of all pull-backs u ∈ F
n

for b under T , where T is the linear map having canonical matrix A. Thus, as mentioned
in Section 1.2 above, the matrix equation Ax = b has a solution for every vector b ∈ F

m

exactly when T is surjective. Consequently, an overdetermined inhomogeneous system will
necessarily be unsolvable for certain choices of right-hand side. On the other hand, if T is
an invertible linear map (as in Example 2.5), then this solution is always unique since the
set {u ∈ F

n | T (v) = b} will have exactly one element for every choice of b ∈ F
m.

It turns out that, given any linear map T ∈ L(Fn, Fm) and any non-zero vector b ∈ F
m,

the structure of the set {v ∈ F
n | T (v) = b} is highly dependent upon null(T ). We illustrate
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this in the following theorem, for which you should provide a proof as practice using the
techniques discussed in these notes.

Theorem 2.11. Let T ∈ L(Fn, Fm) be a linear map, let b ∈ F
m be a non-zero vector, and

denote U = {u ∈ F
n | T (v) = b}. Then given any element u ∈ U , we have that

U = null(T ) + u = {v + u | v ∈ null(T )}

In particular, the set U constructed above is called an affine subspace since it is a genuine
subspace of F

n that has been “offset” by the vector u ∈ F
n. Any set having this structure

might also be called a coset (when used in the context of Group Theory) or a linear manifold
(when used in a geometric context such as a discussion of intersection hyperplanes).

This decomposition of the set of solutions to an inhomogeneous system of linear equations
allows us to exploit the simplicity of describing solutions to homogeneous systems as detailed
in the section above. Given an m×n matrix A ∈ F

m×n and a non-zero vector b ∈ F
m, we call

Ax = 0 the associated homogeneous system to the inhomogeneous system Ax = b. Then, to
solve Ax = b, one first uses Gaussian elimination to factorize A. As discussed in the previous
section, this factorization allows us to immediately describe the set of solutions to Ax = 0.
Given this solution set, it then suffices to find any so-called particular solution to Ax = b in
order to describe all possible to Ax = b. This then results in an affine subspace of solutions
as illustrated in Example 2.3.

We further illustrate this process in the following examples.

Example 2.12.

1. Consider the matrix equation Ax = b, where A is the matrix given by

A =




1 0 0
0 1 0
0 0 1
0 0 0




and b ∈ F
4. This corresponds to an overdetermined inhomogeneous system of linear

equations. Note, in particular, that the bottom row A(4,·) of the matrix corresponds to
the equation 0 = b4, from which Ax = b has no solution unless the fourth component of
the vector b is zero. Furthermore, we conclude from the remaining rows of the matrix
that x1 = b1, x2 = b2, and x3 = b3. Thus, given any vector b having fourth component
zero, we conclude that this solution is unique.
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2. Consider the matrix equation Ax = b, where A is the matrix given by

A =




1 0 1
0 1 1
0 0 0
0 0 0




and b ∈ F
4. This corresponds to an overdetermined inhomogeneous system of linear

equations. Note, in particular, that the bottom two rows of the matrix corresponds to
the equations 0 = b3 and 0 = b4, from which Ax = b has no solution unless the third
and fourth component of the vector b are both zero. Furthermore, we conclude from
the remaining rows of the matrix that x1 = b1− x3 and x2 = b2 − x3. In particular, x3

is a free variable for this system. Thus, denoting by T the linear map having canonical
matrix A, one can solve for the leading variables x1 and x2 in order to first obtain
null(T ) as the one-dimensional subspace of F

3 given by

null(T ) =
{
(x1, x2, x3) ∈ F

3 | x1 = −x3, x2 = −x3

}
.

Then, since x =
[
b1, b2, 0

]T ∈ F
3 is a particular solution for Ax = b (which was

obtained by arbitrarily setting the free variable x3 = 0), it follows that the set of all
solutions to the matrix equation Ax = b has the form

{
(x1, x2, x3) ∈ F

3 | x1 = b1 − x3, x2 = b2 − x3

}
.

3. Consider the matrix equation Ax = b, where A is the matrix given by

A =




1 1 1
0 0 0
0 0 0




and b ∈ F
4. This corresponds to a square inhomogeneous system of linear equations

with two free variables. Thus, as above, this system has no solutions unless b2 = b3 = 0.
Moreover, denoting by T the linear map having canonical matrix A and solving for the
leading variable x1, we obtain null(T ) as the two-dimensional subspace of F

3 given by

null(T ) =
{
(x1, x2, x3) ∈ F

3 | x1 + x2 + x3 = 0
}

.

Then, since x =
[
b1, 0, 0

]T ∈ F
3 is clearly a particular solution for Ax = b, it follows

that the set of all solutions to the matrix equation Ax = b has the form

{
(x1, x2, x3) ∈ F

3 | x1 + x2 + x3 = b1

}
.


