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1 Definition of and Notation for Matrices

Let m, n ∈ Z+ be positive integers. Then we begin by defining an m × n matrix A to be a
rectangular array of numbers

A = (aij)
m,n
i,j=1 = (A(i,j))m,n

i,j=1 =






a11 · · · a1n

...
. . .

...
am1 · · · amn












m numbers

︸ ︷︷ ︸

n numbers

where each element aij ∈ F in the array is called an entry of A (specifically, aij is called
the “i, j entry”), i indexes the rows of A by ranging over the set {1, . . . , m}, and j indexes
the columns of A by ranging over the set {1, . . . , n}. We say that the matrix A has size
m × n and note that it is a (finite) sequence of doubly-subscripted numbers for which the
two subscripts in no way depend upon each other.

Given the ubiquity of matrices in mathematics thought, a rich vocabulary has been
developed for describing various properties and features of matrices that are most useful
to their application. In addition, there is also a rich set of equivalent notations. For the
purposes of these notes, we will use the above notation unless the size of the matrix is
understood from context or is unimportant. In this case, we will drop much of this notation
and denote a matrix simply as

A = (aij) or A = (aij)m×n.

To get a sense of the essential vocabulary, suppose that we have an m×n matrix A = (aij)
with m = n. Then we call A a square matrix. The elements a11, a22, . . . , ann in a square
matrix form what is called the main diagonal of A, and the elements a1n, a2,n−1, . . . , an1

form what is sometimes called the skew main diagonal of A. Entries not on the main
diagonal are also often called off-diagonal entries, and a matrix whose off-diagonal entries
are all zero is called a diagonal matrix. It is common to call the elements a12, a23, . . . , an−1,n

the superdiagonal of A and a21, a32, . . . , an,n−1 the subdiagonal. The motivation for this
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terminology should be clear if you create a sample square matrix and trace the entries
within these particular subsequences of the matrix.

Square matrices are important because they are fundamental to applications of Linear
Algebra. In particular, virtually every use of Linear Algebra in problem solving either
involves square matrices directly or employ them in some indirect manner. In addition,
virtually every usage also involves the notion of vector, where here we mean either an m× 1
matrix (a.k.a. a row vector) or a 1 × n matrix (a.k.a. a column vector).

Example 1.1. Suppose that A = (aij), B = (bij), C = (cij), D = (dij), and E = (eij) are
the following matrices over F:

A =





3
−1

1



, B =

[
4 −1
0 2

]

, C =
[

1, 4, 2
]
, D =





1 5 2
−1 0 1

3 2 4



, E =





6 1 3
−1 1 2

4 1 3



.

Then we say that A is a 3 × 1 matrix (a.k.a a column vector), B is a 2 × 2 square matrix,
C is a 1 × 3 matrix (a.k.a. a row vector), and both D and E are square 3 × 3 matrices.

We can discuss individual entries in each matrix. E.g., d12 = 5 and e12 = e22 = e32 = 1.
The diagonal of D is the sequence d11 = 1, d22 = 0, d33 = 4. The subdiagonal of E is the
sequence e21 = −1, e32 = 1.

We also note that B is called an upper-triangular matrix since all of the elements “below”
the main diagonal are zero. However, none of the matrices above are diagonal matrices.
Given any positive integer n ∈ Z+, we can construct the diagonal matrices In (called the
identity matrix ) and 0n×n (called the zero matrix ) by setting

In =












1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1












and 0n×n =












0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 0 0












,

where each of these matrices is understood to be a square matrix of size n × n. The zero
matrix 0m×n is analogously defined for any two positive integer m, n ∈ Z+ and has size m×n.

2 Matrix Arithmetic

Given positive integers m, n ∈ Z+, we use Fm×n to denote the set of all m×n matrices having
entries over F. In this section, we examine algebraic properties of this set. Specifically,
Fm×n forms a vector space under the operations of component-wise addition and scalar
multiplication, and it is isomorphic to Fmn as a vector space.

2



We also define a multiplication operation between matrices of compatible size and show
that this multiplication operation interacts with the vector space structure on Fm×n in a
natural way.

2.1 Addition and Scalar Multiplication

Let A = (aij) and B = (bij) be m × n matrices over F (where m, n ∈ Z+), and let α ∈ F.
Then matrix addition A + B = ((a + b)ij)m×n and scalar multiplication αA = ((αa)ij)m×n

are both defined component-wise, meaning

(a + b)ij = aij + bij and (αa)ij = αaij.

Equivalently, A + B is the m × n matrix given by






a11 · · · a1n

...
. . .

...
am1 · · · amn




 +






b11 · · · b1n

...
. . .

...
bm1 · · · bmn




 =






a11 + b11 · · · a1n + b1n

...
. . .

...
am1 + bm1 · · · amn + bmn




 ,

and αA is the m × n matrix given by

α






a11 · · · a1n

...
. . .

...
am1 · · · amn




 =






αa11 · · · αa1n

...
. . .

...
αam1 · · · αamn




 .

Example 2.1. With notation as in Example 1.1 above,

D + E =





7 6 5
−2 1 3

7 3 7



 ,

and no two other matrices from Example 1.1 can be added since their sizes are not compatible.
We can similar make calculations like

D − E = D + (−1 · E) =





−5 4 −1
0 −1 −1

−1 1 1



 and 0D = 0E =





0 0 0
0 0 0
0 0 0



 = 03×3.

It is important to note that while these are not the only ways of defining addition and
scalar multiplication operations on Fm×n, the above operations have the advantage of en-
dowing Fm×n with a reasonably natural vector space structure. As a vector space, Fm×n is
seen to have dimension mn since we can build the standard basis matrices

E11, E12, . . . , E1n, E21, E22, . . . , E2n, . . . , Em1, Em2, . . . , Emn
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by analogy to the standard basis for Fmn. That is, each Ekℓ = ((e(k,ℓ))ij) satisfies

(e(k,ℓ))ij =

{

1, if i = k and j = ℓ

0, otherwise
.

This allows us to build a vector space isomorphism Fm×n → Fmn using a bijection that
simply “lays each matrix out flat”. In other words, given A = (aij) ∈ Fm×n,






a11 · · · a1n

...
. . .

...
am1 · · · amn




 7→ (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , am1, am2, . . . , amn) ∈ Fmn.

Example 2.2. The vector space R2×3 of 2 × 3 matrices over R has standard basis

{

E11 =

[
1 0 0
0 0 0

]

, E12 =

[
0 1 0
0 0 0

]

, E13 =

[
0 0 1
0 0 0

]

,

E21 =

[
0 0 0
1 0 0

]

, E22 =

[
0 0 0
0 1 0

]

, E23 =

[
0 0 0
0 0 1

]}

,

which is seen to naturally correspond with the standard basis {e1, . . . , e6} for R6, where

e1 = (1, 0, 0, 0, 0, 0), e2 = (0, 1, 0, 0, 0, 0), . . . , e6 = (0, 0, 0, 0, 0, 1).

Of course, it is not enough to just assert that Fm×n is a vector space since we have
yet to verify that the above defined operations of addition and scalar multiplication satisfy
the axioms of a vector space. The proof of the following theorem is straight-forward and
something that you should work through for practice with matrix notation.

Theorem 2.3. Given positive integers m, n ∈ Z+ and the operations of matrix addition and
scalar multiplication as defined above, the set Fm×n of all m × n matrices satisfies each of
the following properties.

1. (associativity of matrix addition) Given any three matrices A, B, C ∈ Fm×n,

(A + B) + C = A + (B + C).

2. (additive identity for matrix addition) Given any matrices A ∈ Fm×n,

A + 0m×n = 0m×n + A = A.

3. (additive inverses for matrix addition) Given any matrices A ∈ Fm×n, there exists a
matrix −A ∈ Fm×n such that

A + (−A) = (−A) + A = 0m×n.
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4. (commutativity of matrix addition) Given any two matrices A, B ∈ Fm×n,

A + B = B + A.

5. (associativity of scalar multiplication) Given any matrix A ∈ Fm×n and any two scalars
α, β ∈ F,

(αβ)A = α(βA).

6. (multiplicative identity for scalar multiplication) Given any matrix A ∈ Fm×n and
denoting by 1 the multiplicative identity of F,

1A = A.

7. (distributivity of scalar multiplication) Given any two matrices A, B ∈ Fm×n and any
two scalars α, β ∈ F,

(α + β)A = αA + βA and α(A + B) = αA + αB.

As a consequence of Theorem 2.3, every property that holds for an arbitrary vector space
can be taken as a property of Fm×n specifically. Some of the more basic such properties are
collected as follows.

Corollary 2.4. Given positive integers m, n ∈ Z+ and the operations of matrix addition and
scalar multiplication as defined above, the set Fm×n of all m × n matrices satisfies each of
the following properties.

1. Given any matrix A ∈ Fm×n, given any scalar α ∈ F, and denoting by 0 the additive
identity of F,

0A = A and α0m×n = 0m×n.

2. Given any matrix A ∈ Fm×n and any scalar α ∈ F,

αA = 0 =⇒ either α = 0 or A = 0m×n.

3. Given any matrix A ∈ Fm×n and any scalar α ∈ F,

−(αA) = (−α)A = α(−A).

In particular, the additive inverse −A of A is given by −A = (−1)A, where 1 denoted
the additivity identity for F.

While one could prove Corollary 2.4 directly from definitions, the point of recognizing Fm×n

as a vector space is that you get to use these results without worrying about their proof.
Moreover, there is no need to separately prove that they hold for both Rm×n and Cm×n.
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2.2 Multiplying Matrices

Let r, s, t ∈ Z+ be positive integers, A = (aij) ∈ Fr×s be an r×s matrix, and B = (bij) ∈ Fs×t

be an s × t matrix. Then matrix multiplication AB = ((ab)ij)r×t is defined by

(ab)ij =

s∑

k=1

aikbkj.

In particular, note that the “i, j entry” of the matrix product AB involves a summation in
the positive integer s, where s is both the number of columns in A and the number of rows in
B. Thus, this multiplication is only defined for matrices having equal “middle” dimension:

(aij)r×s(bij)s×t = r












a11 · · · a1s

...
. . .

...
ar1 · · · ars






︸ ︷︷ ︸

s






b11 · · · b1t

...
. . .

...
bs1 · · · bst












s

︸ ︷︷ ︸

t

=






∑s

k=1 a1kbk1 · · ·
∑s

k=1 a1kbkt

...
. . .

...
∑s

k=1 arkbk1 · · ·
∑s

k=1 arkbkt












r

︸ ︷︷ ︸

t

Alternatively, if we let n ∈ Z+ be a positive integer, then another way of viewing matrix
multiplication is through the use of the standard inner product on Fn = F1×n = Fn×1.
In particular, we define the dot product (a.k.a. Euclidean inner product) of the row vector
x = (x1j) ∈ F1×n and the column vector y = (yi1) ∈ Fn×1 to be

x · y =
[
x11, · · · , x1n

]
·






y11
...

yn1




 =

n∑

k=1

x1kyk1 ∈ F.

Moreover, we can decompose matrices A = (aij)r×s and B = (bij)s×t into their constitute
row vectors by fixing a positive integer k ∈ Z+ and setting

A(k,·) =
[
ak1, · · · , aks

]
∈ F1×s and B(k,·) =

[
bk1, · · · , bkt

]
∈ F1×t.

Similarly, fixing ℓ ∈ Z+, we can also decompose them into column vectors

A(·,ℓ) =






a1ℓ

...
arℓ




 ∈ Fr×1 and B(·,ℓ) =






b1ℓ

...
bsℓ




 ∈ Fs×1.

It follows that the product AB is then the follow matrix of dot products:

AB =






A(1,·) · B(·,1) · · · A(1,·) · B(·,t)

...
. . .

...
A(r,·) · B(·,1) · · · A(r,·) · B(·,t)




 ∈ Fr×t.
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Example 2.5. With notation as in Example 1.1 above, you should sit down and use the
above definitions in order to verify that the following matrix products hold.

AC =





3
−1

1




[

1, 4, 2
]

=





3 12 6
−1 −4 −2

1 4 2



 ∈ F3×3,

CA =
[

1, 4, 2
]
·





3
−1

1



 = 3 − 4 + 2 = 1 ∈ F,

B2 = BB =

[
4 −1
0 2

] [
4 −1
0 2

]

=

[
16 −6
0 4

]

∈ F2×2,

CE =
[

1, 4, 2
]





6 1 3
−1 1 2

4 1 3



 =
[

10, 7, 17
]
∈ F1×3, and

DA =





1 5 2
−1 0 1

3 2 4









3
−1

1



 =





0
−2
11



 ∈ F3×1.

Note, though, that B cannot be multiplied by any of the other matrices, nor does it make
sense to try to form the products AD, AE, DC, and EC due to the inherent size mismatches.

As illustrated in Example 2.5 above, matrix multiplication is not a commutative operation
(since, e.g., AC ∈ F3×3 while CA ∈ F1×1). Nonetheless, despite the complexity of its
definition, the matrix product otherwise satisfies many familiar properties of a multiplication
operation. We summarize the most basic of these properties in the following theorem.

Theorem 2.6. Let r, s, t, u ∈ Z+ be positive integers.

1. (associativity of matrix multiplication) Given A ∈ Fr×s, B ∈ Fs×t, and C ∈ Ft×u,

A(BC) = (AB)C.

2. (distributivity of matrix multiplication) Given A ∈ Fr×s, B, C ∈ Fs×t, and D ∈ Ft×u,

A(B + C) = AB + AC and (B + C)D = BD + CD.

3. (compatibility with scalar multiplication) Given A ∈ Fr×s, B ∈ Fs×t, and α ∈ F,

α(AB) = (αA)B = A(αB).

As with Theorem 2.3, you should work through a proof of each part of Theorem 2.6 (and
especially of the first part) in order to practice manipulating the indices of entries correctly.
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At the same time, you should be careful to not blithely perform operations on matrices as
you would with numbers. The fact that matrix multiplication is not a commutative operation
should make it clear that significantly more care is required with matrix arithmetic. As
another example, given a positive integers n ∈ Z+, the set Fn×n has what are called zero
divisors. That is, there exist non-zero matrices A, B ∈ Fn×n such that AB = 0n×n:

[
0 1
0 0

]2

=

[
0 1
0 0

] [
0 1
0 0

]

=

[
0 0
0 0

]

= 02×2.

Moreover, note that there exist matrices A, B, C ∈ Fn×n such that AB = AC but B 6= C:

[
0 1
0 0

] [
1 0
0 0

]

= 02×2 =

[
0 1
0 0

] [
0 1
0 0

]

.

As a result, we say that the set Fn×n fails to have the so-called cancellation property. This
failure is a direct result of the fact that there are non-zero matrices in Fn×n that have no
multiplicative inverse. We discuss matrix invertibility at length in the next section and define
a special subset GL(n, F) ⊂ Fn×n upon which the cancellation property does hold.

3 Some Special Operations on Square Matrices

Given a positive integer n ∈ Z+, the set of square matrices Fn×n admits a natural multipli-
cation operation between any two elements as defined in the section above, and so we can
also discuss invertibility of elements in Fn×n with respect to this multiplication operation.
If you have taken a more introductory course in Linear Algebra, then you have most likely
seen much of this material in one form or another. Criteria for determining when a matrix
can be inverted and uses of invertibility typically dominate the bulk of such courses.

We also define three important operations on square matrices called the transpose, conju-
gate transpose, and the trace. These will then be seen to interact with matrix multiplication
and invertibility to form special classes of matrices that are extremely important to applica-
tions of Linear Algebra.

3.1 Invertibility of Square Matrices

Given a positive integer n ∈ Z+, we say that a square matrices A ∈ Fn×n is invertible
(a.k.a. nonsingular) if there exists a square matrix B ∈ Fn×n such that

AB = BA = In.

Moreover, we denote by GL(n, F) the set of all invertible n × n matrices over F. Note, in
particular, that the zero matrix 0n×n /∈ GL(n, F) so that GL(n, F) is not a subspace of Fn×n.

One can prove that if the multiplicative inverse of a matrix A exists, then it is unique, and
so we usually denote it by A−1. This notation for matrix inverse is by analogy to the notation
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for the multiplicative inverse of a scalar and should not be taken to imply that it is possible
to “divide” by a matrix. Since matrix multiplication is not a commutative operation, care
must be taken to check whether or not algebraic properties for scalars continue to hold. We
summarize the most basic of these properties as follows.

Theorem 3.1. Let n ∈ Z+ be positive integers. Then, given any matrices A, B ∈ GL(n, F),

1. the inverse matrix A−1 ∈ GL(n, F) and satisfies (A−1)−1 = A.

2. the matrix power Am ∈ GL(n, F) and satisfies (Am)−1 = (A−1)m, where m ∈ N is any
non-negative integer.

3. the matrix αA ∈ GL(n, F) and satisfies (αA)−1 = α−1A−1, where 0 6= α ∈ F is any
non-zero scalar.

4. the product AB ∈ GL(n, F) and has inverse given by the formula

(AB)−1 = B−1A−1.

Moreover, GL(n, F) has the cancellation property. In other words, given A, B, C ∈ GL(n, F),
if AB = AC, then B = C.

At the same time, it is important to note that not all matrices are invertible. As an
illustration of the subtlety involved in understanding invertibility, we give the following
theorem for the 2 × 2 case.

Theorem 3.2. Let A =

[
a11 a12

a21 a22

]

∈ F2×2. Then A is invertible if and only if the expression

a11a22 − a12a21 6= 0. Moreover, if A is invertible, then

A−1 =








a22

a11a22 − a12a21

−a12

a11a22 − a12a21

−a21

a11a22 − a12a21

a11

a11a22 − a12a21








.

A more general theorem holds for larger matrices, but its statement requires machinery
(namely the notion of the determinant of a matrix) that is outside the scope of these notes.

We close this section by noting that the set GL(n, F) of all invertible n×n matrices over F

is often called the general linear group. This set has so many important uses in mathematics
that there are many equivalent notations for it, including GLn(F), GL(Fn), and simply
GL(n) or GLn if it is not important to emphasis the dependence on F. Moreover, the usage
of the term “group” in the name “general linear group” is highly technical. To explain this
term, we give the following definition, which is unequivocably one of the most fundamental
and ubiquitous notions in all of mathematics.
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Definition 3.3. Let G be a set and ∗ be a binary operation of G. (In other words, ∗ is the
name of a function ∗ : G×G → G, where the notation a∗b means the same thing as ∗(a, b).)
Then G is said to form a group under ∗ if the following three conditions are satisfied:

1. (associativity) Given any three elements a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

2. (existence of an identity element) There is an element e ∈ G such that, given any
element a ∈ G, a ∗ e = e ∗ a = a.

3. (existence of inverse elements) Given any element a ∈ G, there is an element b ∈ G
such that a ∗ b = b ∗ a = e.

You should recognize these as three of the four axioms that addition in a vector space must
satisfy. In particular, a vector space is said to be an abelian group under the binary operation
of vector addition, where abelian is defined as follows.

Definition 3.4. Let G be a group under binary operation ∗. Then G is called an abelian
(a.k.a. commutative) group if, given any two elements a, b ∈ G, a ∗ b = b ∗ a.

Note in particular that GL(n, F) ⊂ Fn×n and that GL(n, F) is a non-abelian group under
matrix multiplication when n ≥ 2. At the same time, Fn×n is an abelian group under
vector addition (since it is a vector space as shown in Theorem 2.3) but does not form a
group under matrix multiplication. The set GL(n, F), similarly, does not form a group under
vector addition since, e.g., the additive identity element 0n×n /∈ GL(n, F). This illustrates
the importance of emphasizing the operation under which we which to consider whether or
not a set forms a mathematical structure such as a group.

The notion of a group is fundamental to mathematical thought because it is often used as a
building block for more complicated algebraic structures, as in a vector space being an abelian
group together with a “compatibly defined” scalar multiplication. As another example, we
note that the set of real numbers R is an abelian group under addition. Moreover, the set
of non-zero real numbers R \ {0} can also be seen to form a group under multiplication.
Thus, since R is an abelian group under these two “compatibly defined” notions of addition
and multiplication, we call R a field. The set of complex numbers C is also seen to form a
field, and there are many other important examples of fields including the set Q of rational
numbers. Note, though, that a set like Z is not a field since Z \ {0} does not form a group
under multiplication. More precisely, Z fails to completely satisfy the following definition.

Definition 3.5. Let G be a set with binary operations + and ∗ defined on G. Then we say
that G forms a field under + and ∗ if the following three conditions are satisfied:

1. The set G forms an abelian group under +.

2. The set G \ {0} forms an abelian group under ∗, where 0 denotes the identity element
of G as a group under +.

3. Given any three elements a, b, c ∈ G, a ∗ (b + c) = a ∗ b + a ∗ c.
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3.2 Transpose and Conjugate Transpose

Given positive integers m, n ∈ Z+ and any matrix A = (aij) ∈ Fm×n, we define the transpose
AT = ((aT )ij) ∈ Fn×m and the conjugate transpose A∗ = ((a∗)ij) ∈ Fn×m by

(aT )ij = aji and (a∗)ij = aji ,

where aji denotes the complex conjugate of the scalar aji ∈ F. In particular, if A ∈ Rm×n,
then note that AT = A∗.

Example 3.6. With notation as in Example 1.1 above,

AT =
[

3 −1 1
]
, BT =

[
4 0

−1 2

]

, CT =





1
4
2



, DT =





1 −1 3
5 0 2
2 1 4



, ET =





6 −1 4
1 1 1
3 2 3



.

One of the motivations for defining the operations of transpose and conjugate transpose
is that they interact with the usual arithmetic operations on matrices in a natural manner.
We summarizes the most fundamental of these interactions in the following theorem.

Theorem 3.7. Given positive integers m, n ∈ Z+ and any matrices A, B ∈ Fm×n,

1. (AT )T = A and (A∗)∗ = A.

2. (A + B)T = AT + BT and (A + B)∗ = A∗ + B∗.

3. (αA)T = αAT and (αA)∗ = αA∗, where α ∈ F is any scalar.

4. (AB)T = BT AT .

5. if m = n and A ∈ GL(n), then AT , A∗ ∈ GL(n) with respective inverses given by

(AT )−1 = (A−1)T and (A∗)−1 = (A−1)∗.

Another motivation for defining the transpose and conjugate transpose operations is that
they allow us to define several very special classes of matrices.

Definition 3.8. Given a positive integer n ∈ Z+, we say that the square matrix A ∈ Fn×n

1. is symmetric if A = AT .

2. is Hermitian if A = A∗.

3. is orthogonal if A ∈ GL(n, R) and A−1 = AT . Moreover, we define the (real) orthogonal
group to be the set O(n) = {A ∈ GL(n, R) | A−1 = AT}.

4. is unitary if A ∈ GL(n, C) and A−1 = A∗. Moreover, we define the (complex) unitary
group to be the set U(n) = {A ∈ GL(n, C) | A−1 = A∗}.
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It turns out that a lot can be said about the eigen-information specific to each of these
special classes of matrices. For example, real symmetric and complex Hermitian matrices
always have real eigenvalues. Moreover, given any matrix A ∈ Rm×n, AAT is a symmetric
matrix with real, non-negative eigenvalues. Similarly, for A ∈ Cm×n, AA∗ is Hermitian with
real, non-negative eigenvalues.

3.3 Trace

We conclude these notes by defining one more fundamental operation on square matrices.
Specifically, given a positive integer n ∈ Z+ and any matrix A = (aij) ∈ Fn×n, we define the
trace of A to be the scalar

trace(A) =

n∑

k=1

akk ∈ F.

Example 3.9. With notation as in Example 1.1 above,

trace(B) = 4 + 2 = 6, trace(D) = 1 + 0 + 4 = 5, and trace(E) = 6 + 1 + 3 = 10.

Note, in particular, that the traces of A and C are not defined since these are not square
matrices.

We summarize some of the most basic properties of the trace operation in the following
theorem, including its connection to the transpose operations defined in the previous section.

Theorem 3.10. Given a positive integer m, n ∈ Z+ and square matrices A, B ∈ Fn×n,

1. trace(αA) = α trace(A), for any scalar α ∈ F.

2. trace(A + B) = trace(A) + trace(B).

3. trace(AT ) = trace(A) and trace(A∗) = trace(A).

4. trace(AA∗) =

n∑

k=1

n∑

ℓ=1

|akℓ|
2. In particular, trace(AA∗) = 0 if and only if A = 0n×n.

5. trace(AB) = trace(BA). More generally, given matrices A1, . . . , Am ∈ Fn×n, the trace
operation has the so-called cyclic property, meaning that

trace(A1 · · ·Am) = trace(A2 · · ·AmA1) = · · · = trace(AmA1 · · ·Am−1).

Moreover, if we define a linear map T : Fn → Fn by setting T (v) = Av for each v ∈ Fn and

if T has distinct eigenvalues λ1, . . . , λn, then trace(A) =
n∑

k=1

λk.
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4 Matrices in Context

As discussed in the introductory document, What Is Linear Algebra?, Linear Algebra can
be seen as a branch of mathematics aimed at solving systems of linear equations involving
a finite number of unknowns. As we will see below, matrices constitute one of the most
fundamental tools for solving such systems. In particular, any arbitrary number of equations
in any number of unknowns — as long as both are finite — can be encoded as a single matrix
equation, and it is through such an encoding that computers are used on literally a daily
basis to solve countless real world problems.

In order to encode a system of linear equations as a matrix equation, we will first exploit
the definition of matrix multiplication. Then we will see that this encoding directly relates
to the notion of linear map between vector spaces.

4.1 Encoding Linear Systems as a Matrix Equation

Let m, n ∈ Z+ be positive integers, and consider the system of m linear equations in n
unknowns x1, . . . , xn,

n∑

k=1

a1,kxk = b1

...
n∑

k=1

am,kxk = bm,

where each ai,j , bi ∈ F. We use A = (aij) to denote the m×n coefficient matrix associated to
this linear system and x = (xi) to denote the n×1 column vector composed of the unknowns
x1, . . . , xn. In other words,

A =








a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn








and x =








x1

x2
...

xn








.

Using this notion, it should be clear from the definition of matrix multiplication that we
have the equality

Ax =








a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · · + amnxn








=






b1
...

bm




 = b,

where we have used b to denote the m× 1 column vector formed from the right-hand side of
the linear system.
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4.2 Using Matrices to Define Linear Maps

As this course progresses, you see that encoding a linear system as a matrix equation is more
than just a notational trick. Perhaps most fundamentally, this matrix point of view provides
unparalleled insight into when a solution to a linear system is the only possible solution.
(In general, the more than can be said with absolute certainty when solving a problem, the
better.) We illustrate this in the following example.

Example 4.1. Suppose that we have the system of linear equations

2x1 + x2 = 0

x1 − x2 = 1,

where x1 and x2 are unknown real numbers. To solve this system, you have most likely been
taught to first solve for one of the unknowns in one of the equations and then to substitute
the result into the other equation. Here, for example, one might solve to obtain

x1 = 1 + x2

from the second equation. Then, substituting this in place of x1 in the first equation, one
obtains

2(1 + x2) + x2 = 0.

From this, we find that x2 = −2/3. Then, by further substitution,

x1 = 1 +

(

−
2

3

)

=
1

3
.

Finally, if we wish to verify that this is the only solution to the given linear system, then we
might appeal to a graph. In other words, since each of the equations corresponds to a line
in the Euclidean plane R2, we can see that the solution (x1, x2) = (1/3,−2/3) corresponds
exactly to the single point of intersection between these two lines:

1 2−1

1

2

−1

x

y

y = x − 1

y = −2x

The above analysis, while tedious, is nonetheless straightforward. However, similar cal-
culations can quickly become unwieldy when attempted on three or more equations, and
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the graphical point of view is clearly impossible to generalize to dimensions four and higher.
And yet, real world problems often require solutions to linear systems in thousands — if not
millions or billions — of dimensions.

Fortunately, Linear Algebra provides a powerful and flexible tool for understanding linear
systems, regardless of the dimension. This tool is the definition of linear map as is developed
more carefully in the corresponding set of lecture notes. For now, you should just think of a
linear map as a special type of function between vector spaces. The idea is that, by involving
these special functions, we are able to work in an arbitrarily high number of dimensions with
little more work than that of two dimensions. We illustrate this in the following example.

Example 4.2. Consider the matrix equation

[
2 1
1 −1

] [
x1

x2

]

=

[
0
1

]

,

which you should recognize as the matrix equation encoding of the linear system in Exam-
ple 4.1. In other words, the column vector

[
2 1
1 −1

] [
x1

x2

]

=

[
2x1 + x2

x1 − x2

]

is equal to the column vector b =
[
0, 1

]T
.

The idea is that the matrix equation above corresponds exactly to asking when b ∈ R2

is an element of the range of the function L : R2 → R2 defined by

L

([
x1

x2

])

=

[
2x1 + x2

x1 − x2

]

.

Put another way, L is the function that, when given the column vector x =
[
x1, x2

]T
as

input, returns the column vector
[
2x1 + x2, x1 − x2

]T
as output.

Now, note that

L

([
1/3
−2/3

])

=

[
0
1

]

,

and note also that L is a bijective function. Since L is bijective, this means that

x =

[
1/3
−2/3

]

is the only possible input vector that can result in the output vector
[
0, 1

]T
. Thus, we have

verified the unique solution to the linear system of Example 4.1. More importantly, though,
we have seen an example of a technique that trivially generalizes to verifying uniqueness of
solutions to any number of equations.
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