Sample Final Exam Problems

Problem 1. Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$ be given by

$$
\begin{aligned}
& v_{1}=(1,2,1) \\
& v_{2}=(1,-2,1) \\
& v_{3}=(1,2,-1)
\end{aligned}
$$

Apply the Gram-Schmidt process to the basis $\left(v_{1}, v_{2}, v_{3}\right)$ of \mathbb{R}^{3}, and call the resulting o.n. basis $\left(u_{1}, u_{2}, u_{3}\right)$.

Problem 2. Let $A \in \mathbb{C}^{3 \times 3}$ be given by

$$
A=\left(\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
-i & 0 & -1
\end{array}\right)
$$

a) Calculate $\operatorname{det} A$.
b) Find $\operatorname{det} A^{4}$.

Problem 3. Let $P \subset \mathbb{R}^{3}$ be the plane containing 0 perpendicular to the vector $(1,1,1)$. Using the standard norm, calculate the distance of the point $(1,2,3)$ to P.

Problem 4. Let $V=\mathbb{C}^{4}$ with its standard inner product. For $\theta \in \mathbb{R}$, let

$$
v_{\theta}=\left(\begin{array}{c}
1 \\
e^{i \theta} \\
e^{2 i \theta} \\
e^{3 i \theta}
\end{array}\right) \in \mathbb{C}^{4} .
$$

Find the canonical matrix of the orthogonal projection onto the subspace $\left\{v_{\theta}\right\}^{\perp}$.
Problem 5. Let $r \in \mathbb{R}$ and let $T \in \mathcal{L}\left(\mathbb{C}^{2}\right)$ be the linear map with canonical matrix

$$
T=\left(\begin{array}{cc}
1 & -1 \\
-1 & r
\end{array}\right)
$$

a) Find the eigenvalues of T.
b) Find an orthonormal basis of \mathbb{C}^{2} consisting of eigenvectors of T.
c) Find a unitary matrix U such that $U T U^{*}$ is diagonal.

Problem 6. Let A be the complex matrix given by:

$$
A=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & -1+i \\
0 & -1-i & 0
\end{array}\right]
$$

a) Find the eigenvalues of A.
b) Find an orthonormal basis of eigenvectors of A.
c) Calculate $|A|=\sqrt{A^{*} A}$.
d) Calculate e^{A}.

Problem 7. Give an orthonormal basis for null T, where $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ is the map with canonical matrix

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Problem 8. Describe the set of solutions $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ of the system of equations

$$
\begin{array}{r}
x_{1}-x_{2}+x_{3}=0 \\
x_{1}+2 x_{2}+x_{3}=0 \\
2 x_{1}+x_{2}+2 x_{3}=0
\end{array}
$$

Problem 9. True or False? Check the box in front of the correct answer.
a) For any $n \geq 1$ and $A, B \in \mathbb{R}^{n \times n}$, one has $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
\square True. \square False.
b) For any $r \in \mathbb{R}, n \geq 1$ and $A \in \mathbb{R}^{n \times n}$, one has $\operatorname{det}(r A)=r \operatorname{det} A$.
\square True. \square False.
c) For any $n \geq 1$ and $A \in \mathbb{C}^{n \times n}$, one has null $A=(\operatorname{ran} A)^{\perp}$.
\square True. \square False.
d) The Gram-Schmidt process applied to an an orthonormal list of vectors reproduces that list unchanged.True. \square False.
e) Every unitary matrix is invertable.
\square True. \square False.

