Name:

Student ID# :

MAT067 University of California, Davis Winter 2007

Sample Final Exam Problems

Problem 1. Let $v_1, v_2, v_3 \in \mathbb{R}^3$ be given by

 $v_1 = (1, 2, 1)$ $v_2 = (1, -2, 1)$ $v_3 = (1, 2, -1)$

Apply the Gram-Schmidt process to the basis (v_1, v_2, v_3) of \mathbb{R}^3 , and call the resulting o.n. basis (u_1, u_2, u_3) .

Problem 2. Let $A \in \mathbb{C}^{3 \times 3}$ be given by

$$A = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & 0 \\ -i & 0 & -1 \end{pmatrix}$$

a) Calculate det A.

b) Find det A^4 .

Problem 3. Let $P \subset \mathbb{R}^3$ be the plane containing 0 perpendicular to the vector (1, 1, 1). Using the standard norm, calculate the distance of the point (1, 2, 3) to P.

Problem 4. Let $V = \mathbb{C}^4$ with its standard inner product. For $\theta \in \mathbb{R}$, let

$$v_{\theta} = \begin{pmatrix} 1\\ e^{i\theta}\\ e^{2i\theta}\\ e^{3i\theta} \end{pmatrix} \in \mathbb{C}^4.$$

Find the canonical matrix of the orthogonal projection onto the subspace $\{v_{\theta}\}^{\perp}$.

Problem 5. Let $r \in \mathbb{R}$ and let $T \in \mathcal{L}(\mathbb{C}^2)$ be the linear map with canonical matrix

$$T = \begin{pmatrix} 1 & -1 \\ -1 & r \end{pmatrix} \,.$$

- a) Find the eigenvalues of T.
- **b**) Find an orthonormal basis of \mathbb{C}^2 consisting of eigenvectors of T.
- c) Find a unitary matrix U such that UTU^* is diagonal.

Problem 6. Let A be the complex matrix given by:

$$A = \left[\begin{array}{rrrr} 5 & 0 & 0 \\ 0 & -1 & -1+i \\ 0 & -1-i & 0 \end{array} \right]$$

- **a**) Find the eigenvalues of A.
- **b**) Find an orthonormal basis of eigenvectors of A.
- c) Calculate $|A| = \sqrt{A^*A}$.
- d) Calculate e^A .

Problem 7. Give an orthonormal basis for null T, where $T \in \mathcal{L}(\mathbb{C}^4)$ is the map with canonical matrix

Problem 8. Describe the set of solutions $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ of the system of equations

Problem 9. True or False? Check the box in front of the correct answer.

a) For any $n \ge 1$ and $A, B \in \mathbb{R}^{n \times n}$, one has $\det(A + B) = \det A + \det B$. True. False.

b) For any $r \in \mathbb{R}$, $n \ge 1$ and $A \in \mathbb{R}^{n \times n}$, one has $\det(rA) = r \det A$. True. False.

c) For any $n \ge 1$ and $A \in \mathbb{C}^{n \times n}$, one has null $A = (\operatorname{ran} A)^{\perp}$. True. False.

d) The Gram-Schmidt process applied to an an orthonormal list of vectors reproduces that list unchanged.

True. False.

e) Every unitary matrix is invertable.True. False.