
LECTURE 1: COXETER GROUPS AND SCHUBERT CALCULUS

STEVEN PON, ALEXANDER WAAGEN

Class website: http://www.math.ucdavis.edu/ anne/WQ2009/280.html

Recommended references:

� Combinatorics of Coxeter Groups, by Bjorner and Brenti;
� Re�ection Groups and Coxeter Groups, by Humphreys;
� Young Tableaux by Fulton;
� Symmetric Functions, Schubert Polynomials and Degeneracy Loci by Manivel;
� Notes on Schubert Polynomials by Macdonald.

1. About Schubert Polynomials

Schubert polynomials were �rst introduced in 1982 by Lascoux and Schutzen-
berger. They are of great interest in mathematics, as they relate to combinatorics,
representation theory and geometry. For example, they form a natural basis of the
cohomology ring H�(G=B). They are also related to �ag varieties and Grassman-
nians, etc.

2. The Symmetric Group

The symmetric group Sn is of primary importance in the study of Coxeter groups
and Schubert polynomials. We de�ne Sn as follows:

De�nition 2.1. Let Sn be the group generated by si, for 1 � i < n, with relations:
� s2i = 1 for all 1 � i < n;
� sisj = sjsi if ji� jj � 2; and
� sisi+1si = si+1sisi+1 for all 1 � i < n.

Alternatively, we can think of Sn as permuting the numbers f1; 2; : : : ; ng. We
can represent a permutation using 1-line notation, say ! = [!1; !2; : : : ; !n] where
!i = !(i). For example, the permutation of f1; 2; 3g that switches 1 and 2 and
leaves 3 �xed is ! = [2; 1; 3]. We can then view the elements si as transpositions
that either switch the numbers in positions i and i+ 1, or switch the locations of i
and i+ 1, depending on whether si acts on the right or the left.

Given an element ! of Sn, we can express ! as a minimal product of transposi-
tions si. We call such an expression a reduced expression, which is not necessarily
unique. We let R(!) be the set of all reduced expressions of !. If w is a reduced
expression of !, we let `(w) = number of transpositions in w. By the following
lemma, `(!) = `(w) is well de�ned.

Lemma 2.2. Given w; v 2 R(!), `(w) = `(v).
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One last thing we must note about the symmetric group is the existence of a
unique longest element. In 1-line notation, this element is [n; n � 1; : : : ; 1], and it
has length (n�1)n

2 . We denote this element by !0.

3. Divided Difference Operators

De�nition 3.1. Let K[X] := Z[x1; x2; : : : ; xn] be the polynomial ring over the
integers in n variables.

If ! 2 Sn, then Sn acts on K[X] by ! (xi) = x!(i) for i = 1; 2; :::; n.

De�nition 3.2. We de�ne the divided di¤erence operator, @i : K[X]! K[X], by

@if(x1; : : : ; xn) =
f(x1; : : : ; xn)� sif(x1; : : : ; xn)

xi � xi+1
for 1 � i < n.

Given this de�nition, one can check the following relations:

(1) @2i = 0
(2) @i@j = @j@i for ji� jj � 2
(3) @i@i+1@i = @i+1@i@i+1
These three relations are checked explicitly below:

(1) Let f 2 K[X]. Then

@2i (f) = @i(
f(x1; : : : ; xn)� sif(x1; : : : ; xn)

xi � xi+1
)

=

f(x1;:::;xn)�sif(x1;:::;xn)
xi�xi+1 � si( f(x1;:::;xn)�sif(x1;:::;xn)xi�xi+1 )

xi � xi+1

=
1

(xi � xi+1)2
(f(x1; : : : ; xn)� sif(x1; : : : ; xn)� f(x1; : : : ; xn) + sif(x1; : : : ; xn))

= 0

(2) Let f 2 K[X]. Then

@i@jf =

f(x1;:::;xn)�sjf(x1;:::;xn)
xj�xj+1 � si( f(x1;:::;xn)�sjf(x1;:::;xn)xj�xj+1 )

xi � xi+1

=
1

(xi � xi+1)(xj � xj+1)
[f(x1; : : : ; xn)� sj(f(x1; : : : ; xn))� si(f(x1; : : : ; xn)) + sisj(f(x1; : : : ; xn))]

= @j@if

(3) Similar to above �simply expand using the de�nition, and apply the relation

sisi+1si = si+1sisi+1.

Given the above three relations for divided di¤erence operators, we can de�ne
the divided di¤erence operator corresponding to a general element of the symmetric
group:
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De�nition 3.3. Given ! 2 Sn and w = si1si2 � � � sik 2 R(!), we let
@! = @i1@i2 � � � @ik

By the above relations, @! is well-de�ned and does not depend on the choice of
reduced word. The algebra generated by @i for 1 � i < n is known as the nil-Hecke
algebra. Note that if we were to try to use a non-reduced word in the de�nition of
@!, we would get 0 because @2i = 0.

We can then de�ne Schubert polynomials:

De�nition 3.4. For every ! 2 Sn, we de�ne the Schubert polynomial �! by:
�! = @!�1!0(x

n�1
1 xn�22 � � �x1n�1x0n)

where !0 is the unique longest element of Sn.

This is a straightforward de�nition; however, it is not ideal from a combinatorial
standpoint since it involves applying a large number of divided di¤erence operators.
Billey, Jockusch and Stanley derived a more combinatorial formula (based on work
by Fomin and Stanley) for Schubert polynomials that is presented below.

4. Combinatorial Definition of Schubert Polynomials

In the following, we identify a reduced word with the indices of that reduced
word. For example, if w = w1w2w3w4 = s3s1s2s1 is a reduced expression for an
element ! 2 Sn, we identify w with the word 3121, so statements such as 1 � w1
make sense.

De�nition 4.1. Let a = a1 � � � ap 2 R(!). We say that a p-tuple � = (�1; : : : ; �p)
of positive integers is a� compatible if:

� 0 � �1 � �2 � � � � � �p;
� �j � aj for all 1 � j � p; and
� �j < �j+1 if aj < aj+1.

Let C(a) denote the set of a-compatible sequences.

Theorem 4.2 (Fomin, Stanley 1991; Billey, Jockusch, Stanley 1993).

�w =
X

a2R(w)

X
�2C(a)

x�1 � � �x�p

Proof of this theorem is withheld until later in the class.

Example: Let ! = [3; 1; 2; 5; 4]. Then we have R(!) = f214; 241; 421g. Note
that we are writing reduced words as acting from left to right. We have to list all
a-compatible sequences for each reduced word.

� w = 214: 0 < �2 � 1 so �2 = 1. Since �i are weakly increasing, �1 = 1 as
well. Then �3 can be 2,3, or 4 since we need �2 < �3 � a3.

� w = 241: There are no a-compatible sequences because �3 must be 1, but
we have an ascent a1 < a2, so we must have 0 < �1 < �2 � �3 = 1.
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Figure 1. An algorithm to �nd the set of reduced words of [3,1,2,5,4].

� w = 421. 0 < �3 � 1 so �3 = 1. This forces �1 = �2 = 1.

Therefore, �w = x31 + x
2
1x2 + x

2
1x3 + x

2
1x4.

The set of reduced words C (!) can be found by checking for descents in !. If
there is a descent at ! (i), multiply by si, and form a tree as in �gure 1 to �nd the
set of all inverses of reduced words of !, from which it is trivial to �nd the set of
reduced words of !.

Note: For those interested in experimentation, SAGE (sagemath.org) can be
very helpful. New functionality is being added daily, and it�s free and open-source.

5. Coxeter Groups

De�nition 5.1. Let S be a set. A matrix m : S � S ! f1; 2; : : : ;1g is called a
Coxeter matrix if:

� m(s; s0) = m(s0; s) for all s; s0 2 S
� m(s; s0) = 1 () s = s0

De�nition 5.2. A Coxeter graph is a graph with vertex set S and an undirected
edge fs; s0g if m(s; s0) � 3. Additionally, we label the edge fs; s0g by m(s; s0) if
m(s; s0) � 4.

Example 5.3. The following is a Coxeter matrix:

0BB@
1 2 3 2
2 1 4 2
3 4 1 1
2 2 1 1

1CCA
The Coxeter graph corresponding to this matrix is given in �gure 2.
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Figure 2. A Coxeter graph.
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