LECTURE 10: WEAK BRUHAT ORDER

STEVEN PON

1. Lattices

Example 1.1. Bruhat order in B_{2} (Coxeter diagram: $\bullet_{a} \overline{ } \bullet_{b}$)
$S=\{a, b\}, T=\{a, b, b a b, a b a\}$.
We can draw a graph showing the covering relations of Bruhat order on B_{2} :

Definition 1.2. An element z in a poset is the meet (or greatest lower bound) of a subset A if
(1) $z \leq y, \quad \forall y \in A$
(2) $u \leq y \quad \forall y \in A \Rightarrow u \leq z$

We denote the meet of A by $\wedge A$. If $A=\{x, y\}$ we denote the meet by $x \wedge y$.
Note: If the meet exists, then it is unique.
Definition 1.3. A poset P for which every $\emptyset \neq A \subseteq P$ has a meet is called a meet-semilattice.

Definition 1.4. Similarly, we can define the join, or least uppper bound, of a subset of a poset, and a join-semilattice. A lattice is a poset which is both a meetsemilattice and a join-semilattice.

Note that the Bruhat graph in Example 1.1 above is not a lattice. However, when we can obtain a lattice if instead of Bruhat order we use weak Bruhat order.

2. Weak Bruhat Order

Weak Bruhat order is especially useful in studying the combinatorics of reduced words; for example, enumerating the number of reduced words of a given Coxeter group element. Intuitively, two elements are comparable in Bruhat order if one is a subword of the other. In weak Bruhat order, two words are comparable if one word is a prefix (or suffix) of the other. There are two weak orders, left and right weak Bruhat order, corresponding to if we are considering prefixes or suffixes.
Definition 2.1. Let (W, S) be a Coxeter system, and let $u, w \in W$. Let \leq_{R} and \leq_{L} denote right and left (weak) Bruhat order, respectively. Then:

[^0](1) $u \leq_{R} w$ if $w=u s_{1} \cdots s_{k}$, where $s_{i} \in S$, s.t. $\ell\left(u s_{1} \cdots s_{i}\right)=\ell(u)+i$, for $1 \leq i \leq k$.
(2) $u \leq_{L} w$ if $w=s_{1} \cdots s_{k} u$, where $s_{i} \in S$, s.t. $\ell\left(s_{1} \cdots s_{i} u\right)=\ell(u)+i$, for $1 \leq i \leq k$.
Remark 2.2. Note that left and right weak orders are distinct, but they are isomorphic by the map $w \rightarrow w^{-1}$.

Weak Bruhat order called "weak" because $u \leq_{R} w \Rightarrow u \leq w$, and $u \leq_{L} w \Rightarrow$ $u \leq w$.

Example 2.3. We can draw the covering relations for weak Bruhat order:
(1) Let $W=S_{3}$.

(2) Let $W=B_{2}$.

Note that in the examples above, we do get lattices.
In the case of S_{n}, there is a simple test: for $x, y \in S_{n}, x \leq_{R} y \Leftrightarrow y$ can be obtained from x by a sequence of adjacent transpositions that increase the inversion number at each step.

Example 2.4. Let $263154 \in S_{6}$ be given in 1-line notation. We can multiply by s_{4} on the right (acting on positions) to get 263514, which increases the inversion number. We could then multiply by s_{1}, then s_{5}, then s_{2} to get the sequence:

$$
x=263154 \rightarrow^{s_{4}} 263514 \rightarrow^{s_{1}} 623514 \rightarrow^{s_{5}} 623541 \rightarrow^{s_{2}} 632541=y
$$

Therefore, $x \leq_{R} y$.
Proposition 2.5. Properties of Weak Order
(1) There is a 1-1 correspondence between reduced words for $w \in W$ and maximal chains in $[e, w]_{R}$.
(2) $u \leq_{R} w \Leftrightarrow \ell(u)+\ell\left(u^{-1} w\right)=\ell(w)$.
(3) If W is finite, then $w \leq w_{0}$ for all $w \in W$.
(4) Prefix property: $u \leq_{R} w \Leftrightarrow$ there exist reduced expressions $u=s_{1} \cdots s_{k}$ and $w=s_{1} \cdots s_{k} s_{k+1} \cdots s_{k}^{\prime}$.
(5) Chain property: $u<_{R} w \Rightarrow$ there is a chain $u=u_{0}<_{R} u_{1}<_{R} \cdots<_{R} u_{k}=$ w such that $\ell\left(u_{i}\right)=\ell\left(u_{)}+i\right.$ for $0 \leq i \leq k$.
(6) Let $s \in D_{L}(u) \cap D_{L}(w)$. Then $u \leq_{R} w \Leftrightarrow s u \leq_{R} s w$.

Proposition 2.6. Let $u, w \in W$. Then $u \leq_{R} w \Leftrightarrow T_{L}(u) \subseteq T_{L}(w)$, where $T_{L}(u)=$ $\{t \in T \mid \ell(t u) \leq \ell(u)\}$.
Proof. $\quad(\Rightarrow)$ Let $u=s_{1} \cdots s_{k}$, w $=s_{1} \cdots s_{k} \cdots s_{q}$ be reduced words. Then $T_{L}(u)=\left\{s_{1} s_{2} \cdots s_{i} \cdots s_{2} s_{1} \mid 1 \leq i \leq k\right\} \subseteq\left\{s_{1} s_{2} \cdots s_{i} \cdots s_{2} s_{1} \mid 1 \leq i \leq\right.$ $q\}=T_{L}(w)$.
(\Leftarrow) Suppose $u=s_{1} \cdots s_{k}$ is reduced. Let $t_{i}=s_{1} s_{2} \cdots s_{i} \cdots s_{2} s_{1}$ for $1 \leq i \leq$ k. Assume $T_{L}(u)=\left\{t_{1}, \cdots, t_{k}\right\} \subseteq T_{L}(w)$. We claim there is a reduced expression $w=s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{q-i}^{\prime}$, for $0 \leq i \leq k$. For $i=0$, this is trivially true since this just means there exists a reduced word for w. Now suppose the claim is true for some $i, 0 \leq i<k$. By assumption, $t_{i+1} \in T_{L}(w)$. We know that $t_{j} \neq t_{i+1}$ for $j \leq i$ by a lemma from a previous lecture (using that $s_{1} \cdots s_{i+1}$ is reduced). Then since we can write $w=s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{q-i}^{\prime}$, we can write $t_{i+1}=s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{m}^{\prime} \cdots s_{1}^{\prime} s_{i} \cdots s_{1}$ for some $1 \leq m \leq q-i$. Then

$$
\begin{aligned}
w=t_{i+1}^{2} w & =\left(s_{1} \cdots s_{i+1} \cdots s_{1}\right)\left(s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{m}^{\prime} \cdots s_{q-i}^{\prime}\right) \\
& =s_{1} \cdots s_{i+1} s_{1}^{\prime} \cdots s_{m}^{\prime} \cdots s_{q-i}^{\prime}
\end{aligned}
$$

Then $u \leq_{R} w$ is equivalent to the claim for $i=k$ by the Prefix Property.

Corollary 2.7. $w \rightarrow T_{L}(w)$ provides an order and rank-preserving embedding $W \hookrightarrow$ lattice of finite subsets of T.

Proposition 2.8. If W is finite,
(1) $w \rightarrow w_{0} w$ and $w \rightarrow w w_{0}$ are anti-automorphisms of weak order and
(2) $w \rightarrow w_{0} w w_{0}$ is an automorphism of weak order.

Proof. We will prove (2), as (1) is similar.
For all $s \in S, s w_{0}=w_{0} s^{\prime}$ for some $s^{\prime} \in S$, since $w_{0} S w_{0}=S$. Suppose $w \leq_{R} w s$. Then $w_{0} w s w_{0}=w_{0} w w_{0} s^{\prime} \leq_{R} w_{0} w w_{0}$ since $\ell\left(w_{0} w s w_{0}\right)=\ell(w s)=\ell(w)+1=$ $\ell\left(w_{0} w w_{0}\right)+1>\ell\left(w_{0} w w_{0}\right)$.

[^0]: Date: January 28, 2009.

