LECTURE 11: PARABOLIC SUBGROUPS

EUNA CHONG

1. Results for left and Right order

Proposition 1.1. Translation principle If $u \leq_{R} w$, then $[u, w]_{R} \cong\left[e, u^{-1} w\right]_{R}$
Proof. We want to show that $x \mapsto u x$ is a poset isomorphism. $\left[e, u^{-1} w\right]_{R} \rightarrow[u, w]_{R}$. Note

$$
\begin{align*}
\ell(w) & =\ell(u)+\ell\left(u^{-1} w\right) \tag{1.1}\\
& \leq \ell(u)+\ell(x)+\ell\left(x^{-1} u^{-1} w\right) \tag{1.2}\\
& \geq \ell(u x)+\ell\left(x^{-1} u^{-1} w\right) \tag{1.3}\\
& \geq \ell(w) . \tag{1.4}\\
x \leq_{R} u^{-1} w & \Leftrightarrow \text { equality at }(1.2) \\
& \Leftrightarrow \text { equality } a t(1.3) \operatorname{and}(1.4) \\
& \Leftrightarrow u \leq_{R} u x \leq_{R} w .
\end{align*}
$$

Hence $X \in\left[e, u^{-1} w\right]_{R} \Leftrightarrow u x \in[u, w]_{R}$ and also $\ell(u x)=\ell(u)+\ell(x)$.
Corollary 1.2. Let $u \leq_{R} w, m=\ell\left(u^{-1} w\right) \Rightarrow \sharp\left\{v \in[u, w]_{R} \mid \ell(v)=\ell(u)+k\right\} \leq\binom{ m}{k}$
Proof. Follows from the Boolean embedding.

$$
\begin{gathered}
w \mapsto T_{L}(w) \\
u \leq_{R} w \Leftrightarrow T_{L}(u) \leq T_{L}(w)
\end{gathered}
$$

Theorem 1.3. Weak order on W is a complete meet - semilattice
Proof. Bjorner- Brenti, Thm. 3.2.1.

2. Parabolic subgroups

$T \subseteq S$
W_{J} is a subgroup of W generated by J and it is called a parabolic subgroup.
Proposition 2.1. (1) $\left(W_{J}, J\right)$ is a Coxeter group.
(2) $\ell_{J}(w)=\ell(w)$ for every $w \in W_{J}$.
(3) $W_{I} \cap W_{J}=W_{I \cap J}$
(4) $<W_{I} \cup W_{J}>=W_{I \cup J}$
(5) $W_{I}=W_{J} \Rightarrow I=J$

[^0]Proof. $w \in W_{J}, w=s_{1} \cdots s_{k}$ for some $s_{i} \in J$. By the Deletion Property we may assume that this word is reduced $\Rightarrow w \in W_{J} \Rightarrow \ell_{J}(w)=\ell(w) \Rightarrow(2)$.
Since $\ell_{J}(w)=\ell(w)$ we can use the Exchange Property holds in W_{J} as a special case of the Exchange property in W
\Rightarrow by the Characterization Theorem we have the $\left(W_{J}, J\right)$ is a Coxeter System $\Rightarrow(1)$ (3), (5)by the Exchange property, (4) an easy exercise.

Remark 2.2. Coxeter diagram of $\left(W_{J}, J\right)$ is obtained by removing all modes $S \backslash J$
Example 2.3. S_{6}
$S=\left\{s_{1}, \cdots, s_{5}\right\}, J=S \backslash\left\{s_{2}\right\}, W_{J}=S_{2} \times S_{4}$

In general $S_{n}, J=S \backslash\left\{s_{k}\right\}$ and $W_{j} \cong S_{k} \times S_{n-k}$
Definition 2.4. If W_{J} is finite \Rightarrow it has a maximal element denoted by $w_{0} J$, $w_{0}(\oslash)=e, w_{0}(S)=w_{0}$ if W is finite.

Definition 2.5.

$$
\begin{aligned}
D_{I}^{J} & :=\left\{w \in W \mid I \subseteq D_{R}(w) \subseteq J\right\} \\
W^{J} & :=D_{\oslash}^{S \backslash J}=\{w \in W, \mid w s>w \forall s \in J\} \\
D_{I} & :=D_{I}^{I}
\end{aligned}
$$

Lemma 2.6. $w \in W^{J} \Leftrightarrow$ no reduced expression for w ends with a letter in J.
Proposition 2.7. If $J \subseteq S$ then we have:
(1) Every $w \in W$ has a unique factorization $w=w^{J} w_{J}$ such that $w^{J} \in W^{J}$ and $w_{J} \in W_{J}$
(2) $\ell(w)=\ell\left(w^{J}\right)+\ell\left(w_{J}\right)$.

Proof. Existence
We choose $s_{1} \in J$ such that $w s_{1}<w$ (if it exists).
We continue choosing $s_{i} \in J$ such that $w s_{i} \cdots s_{i}<w s_{i} \cdots s_{i-1}$ as long as it exists.
Process has to step after at most $\ell(w)$ steps. If it ends at step k then $w_{k}=w s_{i} \cdots s_{k}$ satisfies $w_{k} s>w_{k} \forall S \in J \Rightarrow w_{k} \in W^{J}$.
Let $v=s_{k} \cdots s_{1} \in W_{J} \Rightarrow w=w_{k} v$ and by construction we have $\ell(w)=\ell\left(w_{k}\right)+k$ Uniqueness
We suppose $w=u v=x y$ with $u, x \in W^{J}, v, y \in W_{J}$
Let $u=s_{1} s_{2} \cdots s_{k}$ reduced, $s_{i} \in S$ and $v y^{-1}=s_{1}^{\prime} \cdots s_{q}^{\prime}$ (not necessarily reduced) with $s_{i}^{\prime} \in J$
$\Rightarrow x=u v y^{-1}=s_{1} \cdots s_{k} s_{1}^{\prime} \cdots s_{q}^{\prime}$
From this we can extract a reduced expression for x by deleting some elements. Therefore it cannot end in s_{j}^{\prime} since $x \in W^{J}$
Therefore the reduced word for x has to be a subword of $s_{1} \cdots s_{k} \Rightarrow x \leq u$. But by symmetry we can also deduce that $u \leq x$ so therefore $x=u \Rightarrow v=y$.

3. DIVIDED DIFFERENCE OPERATORS

Newton's divided difference operators. They act on polynomials in n variables : ∂_{i}
$\left(\partial_{i} f\right)\left(x_{1}, \cdots, x_{n}\right)=\frac{f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)}{x_{i}-x_{i+1}}$ or $\partial_{i}=\left(x_{i}-x_{i+1}\right)^{-1}\left(1-s_{i}\right)$
Remark 3.1. Space of symmetric polynomial in x_{i} and x_{i+1} are both kernel and the image of ∂_{i}
Lemma 3.2. For every f, g (polynomials) $\partial_{i}(f g)=\left(\partial_{i} f\right)_{g}+\left(s_{i} f\right)\left(\partial_{i} g\right)$
Proof. Exercise.

[^0]: Date: February 2, 2009.

