LECTURE 11: PARABOLIC SUBGROUPS

EUNA CHONG

1. Results for left and right order

Proposition 1.1. Translation principle If $u \leq_R w$, then $[u, w]_R \cong [e, u^{-1}w]_R$

Proof. We want to show that $x \mapsto ux$ is a poset isomorphism. $[e, u^{-1}w]_R \to [u, w]_R$. Note

(1.1)
$$\ell(w) = \ell(u) + \ell(u^{-1}w)$$

(1.2)
$$\leq \ell(u) + \ell(x) + \ell(x^{-1}u^{-1}w)$$

(1.3)
$$\geq \ell(ux) + \ell(x^{-1}u^{-1}w)$$

(1.4) $\geq \ell(w).$

$$x \leq_{R} u^{-1}w \Leftrightarrow equality \ at(1.2)$$
$$\Leftrightarrow equality \ at(1.3) and(1.4)$$
$$\Leftrightarrow u \leq_{R} ux \leq_{R} w.$$

Hence $X \in [e, u^{-1}w]_R \Leftrightarrow ux \in [u, w]_R$ and also $\ell(ux) = \ell(u) + \ell(x)$. **Corollary 1.2.** Let $u \leq_R w$, $m = \ell(u^{-1}w) \Rightarrow \sharp\{v \in [u, w]_R | \ell(v) = \ell(u) + k\} \leq \binom{m}{k}$ *Proof.* Follows from the Boolean embedding.

$$w \mapsto T_L(w)$$
$$u \leq_R w \Leftrightarrow T_L(u) \leq T_L(w)$$

Theorem 1.3. Weak order on W is a complete meet - semilattice

Proof. Bjorner- Brenti, Thm. 3.2.1.

2. PARABOLIC SUBGROUPS

 $T\subseteq S$

 W_J is a subgroup of W generated by J and it is called a parabolic subgroup.

Proposition 2.1. (1) (W_J, J) is a Coxeter group. (2) $\ell_J(w) = \ell(w)$ for every $w \in W_J$. (3) $W_I \bigcap W_J = W_{I \bigcap J}$ (4) $\langle W_I \bigcup W_J \rangle = W_{I \bigcup J}$ (5) $W_I = W_J \Rightarrow I = J$ Date: February 2, 2009.

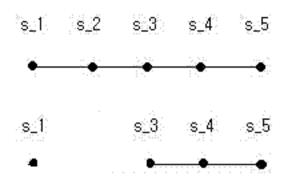
Proof. $w \in W_J, w = s_1 \cdots s_k$ for some $s_i \in J$. By the Deletion Property we may assume that this word is reduced $\Rightarrow w \in W_J \Rightarrow \ell_J(w) = \ell(w) \Rightarrow (2)$.

Since $\ell_J(w) = \ell(w)$ we can use the Exchange Property holds in W_J as a special case of the Exchange property in W

⇒ by the Characterization Theorem we have the (W_J, J) is a Coxeter System ⇒ (1) (3), (5) by the Exchange property, (4) an easy exercise.

Remark 2.2. Coxeter diagram of (W_J, J) is obtained by removing all modes $S \setminus J$ **Example 2.3.** S_6

$$S = \{s_1, \cdots, s_5\}, J = S \setminus \{s_2\}, W_J = S_2 \times S_4$$



2

In general $S_n, J = S \setminus \{s_k\}$ and $W_j \cong S_k \times S_{n-k}$

Definition 2.4. If W_J is finite \Rightarrow it has a maximal element denoted by w_0J , $w_0(\oslash) = e$, $w_0(S) = w_0$ if W is finite.

Definition 2.5.

$$D_I^J := \{ w \in W | I \subseteq D_R(w) \subseteq J \}$$
$$W^J := D_{\oslash}^{S \setminus J} = \{ w \in W, | ws > w \forall s \in J \}$$
$$D_I := D_I^I$$

Lemma 2.6. $w \in W^J \Leftrightarrow$ no reduced expression for w ends with a letter in J.

Proposition 2.7. If $J \subseteq S$ then we have:

(1) Every $w \in W$ has a unique factorization $w = w^J w_J$ such that $w^J \in W^J$ and $w_J \in W_J$

(2)
$$\ell(w) = \ell(w^J) + \ell(w_J).$$

Proof. Existence

We choose $s_1 \in J$ such that $ws_1 < w$ (if it exists).

We continue choosing $s_i \in J$ such that $ws_i \cdots s_i < ws_i \cdots s_{i-1}$ as long as it exists. Process has to step after at most $\ell(w)$ steps. If it ends at step k then $w_k = ws_i \cdots s_k$ satisfies $w_k s > w_k \forall S \in J \Rightarrow w_k \in W^J$.

Let $v = s_k \cdots s_1 \in W_J \Rightarrow w = w_k v$ and by construction we have $\ell(w) = \ell(w_k) + k$ Uniqueness

We suppose w = uv = xy with $u, x \in W^J, v, y \in W_J$

Let $u = s_1 s_2 \cdots s_k$ reduced, $s_i \in S$ and $vy^{-1} = s'_1 \cdots s'_q$ (not necessarily reduced) with $s'_i \in J$

$$\Rightarrow x = uvy^{-1} = s_1 \cdots s_k s'_1 \cdots s'_q$$

From this we can extract a reduced expression for x by deleting some elements. Therefore it cannot end in s'_i since $x \in W^J$

Therefore the reduced word for x has to be a subword of $s_1 \cdots s_k \Rightarrow x \leq u$. But by symmetry we can also deduce that $u \leq x$ so therefore $x = u \Rightarrow v = y$.

3. Divided difference operators

Newton's divided difference operators. They act on polynomials in n variables : ∂_i

$$(\partial_i f)(x_1, \cdots, x_n) = \frac{f(x_1, \dots, x_n) - f(x_1, \dots, x_{i+1}, x_i, \dots, x_n)}{x_i - x_{i+1}}$$

or $\partial_i = (x_i - x_{i+1})^{-1} (1 - s_i)$

Remark 3.1. Space of symmetric polynomial in x_i and x_{i+1} are both kernel and the image of ∂_i

Lemma 3.2. For every f, g (polynomials) $\partial_i(fg) = (\partial_i f)_q + (s_i f)(\partial_i g)$

Proof. Exercise.