
LECTURE 11: PARABOLIC SUBGROUPS

EUNA CHONG

1. Results for left and right order

Proposition 1.1. Translation principle If u ≤R w , then [u, w]R ∼=
[
e, u−1w

]
R

Proof. We want to show that x 7→ ux is a poset isomorphism. [e, u−1w]R → [u, w]R.
Note

`(w) = `(u) + `(u−1w)(1.1)

≤ `(u) + `(x) + `(x−1u−1w)(1.2)

≥ `(ux) + `(x−1u−1w)(1.3)

≥ `(w).(1.4)

x ≤R u−1w ⇔ equality at(1.2)

⇔ equality at(1.3)and(1.4)
⇔ u ≤R ux ≤R w.

Hence X ∈ [e, u−1w]R ⇔ ux ∈ [u, w]R and also `(ux) = `(u) + `(x). �

Corollary 1.2. Let u ≤R w , m = `(u−1w) ⇒ ]{v ∈ [u, w]R|`(v) = `(u)+k} ≤ (m
k )

Proof. Follows from the Boolean embedding.

w 7→ TL(w)
u ≤R w ⇔ TL(u) ≤ TL(w)

�

Theorem 1.3. Weak order on W is a complete meet - semilattice

Proof. Bjorner- Brenti, Thm. 3.2.1. �

2. Parabolic subgroups

T ⊆ S
WJ is a subgroup of W generated by J and it is called a parabolic subgroup.

Proposition 2.1. (1) (WJ , J) is a Coxeter group.
(2) `J(w) = `(w) for every w ∈ WJ .
(3) WI

⋂
WJ = WI

⋂
J

(4) < WI

⋃
WJ >= WI

⋃
J

(5) WI = WJ ⇒ I = J
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Proof. w ∈ WJ , w = s1 · · · sk for some si ∈ J . By the Deletion Property we may
assume that this word is reduced ⇒ w ∈ WJ ⇒ `J(w) = `(w) ⇒ (2).
Since `J(w) = `(w) we can use the Exchange Property holds in WJ as a special
case of the Exchange property in W
⇒ by the Characterization Theorem we have the (WJ , J) is a Coxeter System⇒ (1)
(3), (5)by the Exchange property, (4) an easy exercise. �

Remark 2.2. Coxeter diagram of (WJ , J) is obtained by removing all modes S \J

Example 2.3. S6

S = {s1, · · · , s5}, J = S \ {s2}, WJ = S2 × S4

In general Sn, J = S \ {sk} and Wj
∼= Sk × Sn−k

Definition 2.4. If WJ is finite ⇒ it has a maximal element denoted by w0J ,
w0(�) = e , w0(S) = w0 if W is finite.
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Definition 2.5.
DJ

I := {w ∈ W |I ⊆ DR(w) ⊆ J}

W J := D
S\J
� = {w ∈ W, |ws > w∀s ∈ J}

DI := DI
I

Lemma 2.6. w ∈ W J ⇔ no reduced expression for w ends with a letter in J .

Proposition 2.7. If J ⊆ S then we have:
(1) Every w ∈ W has a unique factorization w = wJwJ such that wJ ∈ W J and
wJ ∈ WJ

(2) `(w) = `(wJ) + `(wJ).

Proof. Existence
We choose s1 ∈ J such that ws1 < w (if it exists).
We continue choosing si ∈ J such that wsi · · · si < wsi · · · si−1 as long as it exists.
Process has to step after at most `(w) steps. If it ends at step k then wk = wsi · · · sk

satisfies wks > wk∀S ∈ J ⇒ wk ∈ W J .
Let v = sk · · · s1 ∈ WJ ⇒ w = wkv and by construction we have `(w) = `(wk) + k

Uniqueness
We suppose w = uv = xy with u, x ∈ W J , v, y ∈ WJ

Let u = s1s2 · · · sk reduced, si ∈ S and vy−1 = s′1 · · · s′q (not necessarily reduced)
with s′i ∈ J
⇒ x = uvy−1 = s1 · · · sks′1 · · · s′q
From this we can extract a reduced expression for x by deleting some elements.
Therefore it cannot end in s′j since x ∈ W J

Therefore the reduced word for x has to be a subword of s1 · · · sk ⇒ x ≤ u. But by
symmetry we can also deduce that u ≤ x so therefore x = u ⇒ v = y. �

3. Divided difference operators

Newton’s divided difference operators. They act on polynomials in n variables :
∂i

(∂if)(x1, · · · , xn) = f(x1,...,xn)−f(x1,...,xi+1,xi,...,xn)
xi−xi+1

or ∂i = (xi − xi+1)−1(1− si)

Remark 3.1. Space of symmetric polynomial in xi and xi+1 are both kernel and
the image of ∂i

Lemma 3.2. For every f, g (polynomials) ∂i(fg) = (∂if)g + (sif)(∂ig)

Proof. Exercise.
�
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