LECTURE 12: DIVIDED DIFFERENCE OPERATORS

WANG, QIANG

Definition 0.1. Let $X=\left\{x_{1}, \cdots, x_{n}\right\}$, then $s_{i} \in S_{n}$ acts on $f \in \mathbb{Z}[X]$ by switching the x_{i} and x_{i+1}. That is,

$$
s_{i} . f\left(x_{1}, \cdots, x_{i}, x_{i+1}, \cdots, x_{n}\right)=f\left(x_{1}, \cdots, x_{i+1}, x_{i}, \cdots, x_{n}\right)
$$

For $s_{i} \in S_{n}$, define $\partial_{i}: \mathbb{Z}[X] \rightarrow \mathbb{Z}[X]$ by

$$
\left(\partial_{i} f\right)\left(x_{1}, \cdots, x_{n}\right)=\frac{f\left(x_{1}, \cdots, x_{n}\right)-s_{i} \cdot f\left(x_{1}, \cdots, x_{n}\right)}{x_{i}-x_{i+1}}
$$

In another word, $\partial_{i}=\left(x_{i}-x_{i+1}\right)^{-1}\left(1-s_{i}\right)$.

1. Graph of reduced words

Given $w \in(W, S)$, we can define a colored graph $\Gamma(w)$, called the graph of reduced words of w, as follow. The nodes in this graph are the set of all reduced words of w. Let u, v be two nodes of this graph, (i.e, two reduced work of w) then u, v are connected by an edge colored (labeled) by a defining relation of (W, S) if and only if u can be transformed to v (or vise versa) by one application of the given defining relation.

It is clear that the defining relations $s_{i}^{2}=e$ are never used in $\Gamma(w)$, for all nodes in $\Gamma(w)$ are reduced words.

Example 1.1. Let the Coxeter system be $\left.\left(\mathcal{S}_{5}\right),\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}\right)$, and let $w=[31542]$ in one-line notation, then one reduced word for w could be $s_{2} s_{3} s_{4} s_{3} s_{1}$, we will just code this word by its indices 23431. Let us show the connected component of $\Gamma(w)$ that contains this word. (As we will see later this is the whole graph)

Proposition 1.2. Given $w \in(W, S), \Gamma(w)$ is connected.

[^0]Proof. We prove the statement for the case of $\left(\mathcal{S}_{n},\left\{s_{1}, \cdots, s_{n-1}\right\}\right)$, the spirits are the same for all other types of Coxeter group.

Induct on $\ell(w)$. For the case $\ell(w) \leq 2$ the statement clearly holds.
Now assume $\ell(w) \geq 3$, let $\underline{a}=a_{1} \cdots a_{l}$ and $\underline{b}=b_{1} \cdots b_{l}$ be two reduced words of w. By E.P. $b_{1} w$ has a reduced expression of the form $a_{1} \cdots \hat{a_{k}} \cdots a_{l}$, for some $1 \leq k \leq l$. Thus $b_{1} a_{1} \cdots \hat{a_{k}} \cdots a_{l}$ is another reduced expression of w.

First note that by induction, $b_{2} \cdots b_{l}$ and $a_{1} \cdots \hat{a_{k}} \cdots a_{l}$ are connected by a sequence of edges in $\Gamma\left(b_{1} w\right)$, thus $b_{1} b_{2} \cdots b_{l}$ and $b_{1} \cdots \hat{a_{k}} \cdots a_{l}$ are connected by a sequence of edges in $\Gamma(w)$.

If $k<l$, then in $\Gamma\left(w a_{l}\right), a_{1} \cdots a_{l-1}$ and $b_{1} \cdots \hat{a_{k}} \cdots a_{l-1}$ are connected by a sequence of edges, thus in $\Gamma(w), a_{1} \cdots a_{l}$ and $b_{1} \cdots \hat{a_{k}} \cdots a_{l}$ are connected by a sequence of edges. Therefore \underline{a} and \underline{b} are connected in $\Gamma(w)$.

If $k=l$, then either a_{1} and b_{1} are consecutive or not. If they are not, then $b_{1} a_{1} \cdots a_{l-1}$ and $a_{1} b_{1} a_{2} \cdots a_{l-1}$ are connected by a single edge labeled by $a_{1} b_{1}=$ $b_{1} a_{1}$. Now in $\Gamma(w), \underline{a}$ and $a_{1} b_{1} a_{2} \cdots a_{l-1}$ are connected by a sequence of edges "lifted" from $\Gamma\left(a_{1} w\right)$, thus \underline{a} and \underline{b} are connected in $\Gamma(w)$.

Finally, if $k=l$ but a_{1} and b_{1} are consecutive, then by E.P. $a_{1} b_{1} a_{1} \cdots \hat{a_{j}} \cdots a_{l-1}$ for some $1 \leq j \leq l-1$ is another reduced word of w. If $j=1, \cdots, l-2$ then we just repeat about argument for the case $k<l$ with $\underline{b^{\prime}}=\underline{a}$ and $\underline{a^{\prime}}=b_{1} a_{1} \cdots a_{l-1}$. Otherwise if $j=l-1$, in particular $j>1$, then $a_{1} b_{1} a_{1} \cdots \hat{a_{j}} \cdots a_{l-1}$ is connected to $b_{1} a_{1} b_{1} \cdots \hat{a_{j}} \cdots a_{l-1}$ by an edge labeled by $a_{1} b_{1} a_{1}=b_{1} a_{1} b_{1}$ in $\Gamma(w)$. Now we note that \underline{b} and $b_{1} a_{1} b_{1} \cdots \hat{a_{j}} \cdots a_{l-1}$ are connected in $\Gamma(w)$ by lifting a path from $\Gamma\left(b_{1} w\right)$, and \underline{a} and $a_{1} b_{1} a_{1} \cdots \hat{a_{j}} \cdots a_{l-1}$ are connected in $\Gamma(w)$ by lifting a path from $\Gamma\left(a_{1} w\right)$, we are done.

2. Properties of divided difference operators

Lemma 2.1. If $f, g \in \mathbb{Z}[X]$ then

$$
\partial_{i}(f * g)=\left(\partial_{i} f\right) * g+\left(s_{i} . f\right) *\left(\partial_{i} g\right)
$$

Proof.

$$
\begin{aligned}
\partial_{i}(f * g) & =\frac{f * g-s_{i} .(f * g)}{x_{i}-x_{i+1}} \\
& =\frac{f * g-\left(s_{i} . f\right) * g+\left(s_{i} . f\right) * g-s_{i} .(f * g)}{x_{i}-x_{i+1}} \\
& =\frac{f * g-\left(s_{i} . f\right) * g}{x_{i}-x_{i+1}}+\frac{\left(s_{i} . f\right) * g-\left(s_{i} . f\right) *\left(s_{i} . g\right)}{x_{i}-x_{i+1}} \\
& =\left(\partial_{i} f\right) * g+\left(s_{i} . f\right) *\left(\partial_{i} g\right)
\end{aligned}
$$

Theorem 2.2 (Nil-Coxeter relations).

$$
\begin{aligned}
\partial_{i} \partial_{j} & =\partial_{j} \partial_{i} \text { for }|i-j|>1 \\
\partial_{i} \partial_{i+1} \partial_{i} & =\partial_{i+1} \partial_{i} \partial_{i+1} \text { for } i=1, \cdots, n-1 \\
\partial_{i}^{2} & =0
\end{aligned}
$$

Proof. In lecture note 1, Steven and Alex gave a detailed proof.
Definition 2.3. If $a_{1} \cdots a_{l}$ is a reduced word of $w \in \mathcal{S}_{n}$, then define $\partial_{w}=\partial_{a_{1}} \cdots \partial_{a_{l}}$.

Remark 2.4. Because of the fact that $\Gamma(w)$ is connected (where edges in Γ correspond to only the first two nil-Coxeter relations), ∂_{w} does not depends on the choice of reduced word, thus is well-defined.

On the other hand, if $a_{1} \cdots a_{l}$ is not a reduced word, then $\partial_{a_{1}} \cdots \partial_{a_{l}}=0$. To see that we let $1 \leq j<l$ be such that $u=a_{1} \cdots a_{j}$ is a reduced word but $a_{1} \cdots a_{j+1}$ is no longer reduced. Then there is another reduced expression of u that is ended with $a_{j+1}: b_{1} \cdots a_{j+1}$. Now $\partial_{a_{1}} \cdots \partial_{a_{j}} \partial_{a_{j+1}} \partial_{a_{l}}=\partial_{b_{1}} \cdots \partial_{a_{j+1}} \partial_{a_{j+1}} \cdots \partial_{a_{l}}=0$ by the third relation.

From above consideration, we can conclude

$$
\partial_{u} \partial_{v}= \begin{cases}\partial_{u v} & \text { if } \ell(u v)=\ell(u)+\ell(v) \tag{}\\ 0 & \text { otherwise }\end{cases}
$$

Lemma 2.5. $s_{i} \circ \partial_{w}=\partial_{w}$ if and only if $\ell(i w)=\ell(w)-1$
Proof.

$$
\begin{array}{r}
s_{i} \circ \partial_{w}=\partial_{w} \Leftrightarrow \partial_{i} \partial_{w}=0 \text { (by definition) } \\
\Leftrightarrow \ell\left(s_{i} w\right)=\ell(w)-1\left(\text { by }^{*}\right)
\end{array}
$$

Proposition 2.6. If w_{0} is the longest element of \mathcal{S}_{n}, then

$$
\partial_{w_{0}}=a_{\delta}^{-1} \sum_{w \in \mathcal{S}_{n}} \epsilon(w) w
$$

where

$$
a_{\delta}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
$$

is the Vandermond determinant, and $\epsilon(w)$ is the sign of w.
Proof. By definition, for any $v \in \mathcal{S}_{n}, \partial_{v}$ can be written of the form

$$
\partial_{v}=\sum_{w \in \mathcal{S}_{n}} c_{v, w} w
$$

In particular, we can write $\partial_{w}=\sum_{w \in \mathcal{S}_{n}} c_{w} w$. By above lemma, we have $s_{i} \partial_{w_{0}}=$ $\partial_{w_{0}}$ for any $i=1, \cdots, n-1$, thus $u \partial_{w_{0}}=\partial_{w_{0}}$ for any $u \in \mathcal{S}_{n}$. This implies

$$
\sum_{w \in \mathcal{S}_{n}} c_{w} w=u \sum_{w \in \mathcal{S}_{n}} c_{w} w=\sum_{w \in \mathcal{S}_{n}}\left(u \cdot c_{w}\right)(u w)
$$

Comparing the coefficient, we get $c_{u w}=u . c_{w}$. Thus if we know the coefficient c_{w} for some w, then we can derive c_{w} for all w. Indeed, we claim that we know

$$
c_{w_{0}}=a_{\delta}^{-1} \epsilon\left(w_{0}\right)
$$

Assume above claim, we note $w=w w_{0} w_{0}$, thus $c_{w}=w w_{0} c_{w_{0}}=\epsilon\left(w w_{0}\right) \epsilon\left(w_{0}\right) a_{\delta}^{-1}=$ $\epsilon(w) a_{\delta}^{-1}$.

The only thing left to show is the claim. One reduced expression of w_{0} is

$$
w_{0}=\left(s_{n-1} \cdots s_{1}\right)\left(s_{n-1} \cdots s_{2}\right) \cdots\left(s_{n-1}\right)
$$

So,

$$
\partial_{w_{0}}=\left(\partial_{n-1} \cdots \partial_{1}\right)\left(\partial_{n-1} \cdots \partial_{2}\right) \cdots\left(\partial_{n-1}\right)
$$

We are interested in the coefficient of w_{0} after "multiply out" the rhs. For $n=3$, the least non-trivial case we see

$$
\partial_{w_{0}}=\partial_{2} \partial_{1} \partial_{2}=\frac{1}{x_{2}-x_{3}}\left(1-s_{2}\right) \frac{1}{x_{1}-x_{2}}\left(1-s_{1}\right) \frac{1}{x_{2}-x_{3}}\left(1-s_{2}\right)
$$

clearly $c_{w_{0}}=\frac{1}{x_{2}-x_{3}} \frac{1}{x_{1}-x_{2}} \frac{1}{x_{2}-x_{3}}(-1)^{3}$, claim shown.
The general case can be checked explicitly in a similar fashion.

[^0]: Date: January 23, 2009.

