LECTURE 12: DIVIDED DIFFERENCE OPERATORS

WANG, QIANG

Definition 0.1. Let $X = \{x_1, \dots, x_n\}$, then $s_i \in S_n$ acts on $f \in \mathbb{Z}[X]$ by switching the x_i and x_{i+1} . That is,

$$s_i. f(x_1, \cdots, x_i, x_{i+1}, \cdots, x_n) = f(x_1, \cdots, x_{i+1}, x_i, \cdots, x_n)$$

For $s_i \in S_n$, define $\partial_i : \mathbb{Z}[X] \to \mathbb{Z}[X]$ by

$$(\partial_i f)(x_1, \cdots, x_n) = \frac{f(x_1, \cdots, x_n) - s_i \cdot f(x_1, \cdots, x_n)}{x_i - x_{i+1}}$$

In another word, $\partial_i = (x_i - x_{i+1})^{-1}(1 - s_i)$.

1. GRAPH OF REDUCED WORDS

Given $w \in (W, S)$, we can define a colored graph $\Gamma(w)$, called the **graph of** reduced words of w, as follow. The nodes in this graph are the set of all reduced words of w. Let u, v be two nodes of this graph, (i.e, two reduced work of w) then u, v are connected by an edge colored (labeled) by a defining relation of (W, S) if and only if u can be transformed to v (or vise versa) by one application of the given defining relation.

It is clear that the defining relations $s_i^2 = e$ are never used in $\Gamma(w)$, for all nodes in $\Gamma(w)$ are reduced words.

Example 1.1. Let the Coxeter system be (S_5) , $\{s_1, s_2, s_3, s_4\}$, and let w = [31542]in one-line notation, then one reduced word for w could be $s_2s_3s_4s_3s_1$, we will just code this word by its indices 23431. Let us show the connected component of $\Gamma(w)$ that contains this word. (As we will see later this is the whole graph)

Proposition 1.2. Given $w \in (W, S)$, $\Gamma(w)$ is connected.

Date: January 23, 2009.

Proof. We prove the statement for the case of $(S_n, \{s_1, \dots, s_{n-1}\})$, the spirits are the same for all other types of Coxeter group.

Induct on $\ell(w)$. For the case $\ell(w) \leq 2$ the statement clearly holds.

Now assume $\ell(w) \geq 3$, let $\underline{a} = a_1 \cdots a_l$ and $\underline{b} = b_1 \cdots b_l$ be two reduced words of w. By E.P. $b_1 w$ has a reduced expression of the form $a_1 \cdots \hat{a_k} \cdots a_l$, for some $1 \leq k \leq l$. Thus $b_1 a_1 \cdots \hat{a_k} \cdots a_l$ is another reduced expression of w.

First note that by induction, $b_2 \cdots b_l$ and $a_1 \cdots \hat{a_k} \cdots a_l$ are connected by a sequence of edges in $\Gamma(b_1w)$, thus $b_1b_2 \cdots b_l$ and $b_1 \cdots \hat{a_k} \cdots a_l$ are connected by a sequence of edges in $\Gamma(w)$.

If k < l, then in $\Gamma(wa_l)$, $a_1 \cdots a_{l-1}$ and $b_1 \cdots \hat{a_k} \cdots a_{l-1}$ are connected by a sequence of edges, thus in $\Gamma(w)$, $a_1 \cdots a_l$ and $b_1 \cdots \hat{a_k} \cdots a_l$ are connected by a sequence of edges. Therefore \underline{a} and \underline{b} are connected in $\Gamma(w)$.

If k = l, then either a_1 and b_1 are consecutive or not. If they are not, then $b_1a_1 \cdots a_{l-1}$ and $a_1b_1a_2 \cdots a_{l-1}$ are connected by a single edge labeled by $a_1b_1 = b_1a_1$. Now in $\Gamma(w)$, \underline{a} and $a_1b_1a_2 \cdots a_{l-1}$ are connected by a sequence of edges "lifted" from $\Gamma(a_1w)$, thus \underline{a} and \underline{b} are connected in $\Gamma(w)$.

Finally, if k = l but a_1 and b_1 are consecutive, then by E.P. $a_1b_1a_1 \cdots \hat{a_j} \cdots a_{l-1}$ for some $1 \leq j \leq l-1$ is another reduced word of w. If $j = 1, \cdots, l-2$ then we just repeat about argument for the case k < l with $\underline{b}' = \underline{a}$ and $\underline{a}' = b_1a_1 \cdots a_{l-1}$. Otherwise if j = l-1, in particular j > 1, then $a_1b_1a_1 \cdots \hat{a_j} \cdots a_{l-1}$ is connected to $b_1a_1b_1 \cdots \hat{a_j} \cdots a_{l-1}$ by an edge labeled by $a_1b_1a_1 = b_1a_1b_1$ in $\Gamma(w)$. Now we note that \underline{b} and $b_1a_1b_1 \cdots \hat{a_j} \cdots a_{l-1}$ are connected in $\Gamma(w)$ by lifting a path from $\Gamma(b_1w)$, and \underline{a} and $a_1b_1a_1 \cdots \hat{a_j} \cdots a_{l-1}$ are connected in $\Gamma(w)$ by lifting a path from $\Gamma(a_1w)$, we are done.

2. Properties of divided difference operators

Lemma 2.1. If $f, g \in \mathbb{Z}[X]$ then

$$\partial_i (f * g) = (\partial_i f) * g + (s_i. f) * (\partial_i g)$$

Proof.

$$\begin{aligned} \partial_i(f*g) &= \frac{f*g - s_i.(f*g)}{x_i - x_{i+1}} \\ &= \frac{f*g - (s_i.f)*g + (s_i.f)*g - s_i.(f*g)}{x_i - x_{i+1}} \\ &= \frac{f*g - (s_i.f)*g}{x_i - x_{i+1}} + \frac{(s_i.f)*g - (s_i.f)*(s_i.g)}{x_i - x_{i+1}} \\ &= (\partial_i f)*g + (s_i.f)*(\partial_i g) \end{aligned}$$

Theorem 2.2 (Nil-Coxeter relations).

$$\partial_i \partial_j = \partial_j \partial_i \text{ for } |i - j| > 1$$

 $\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1} \text{ for } i = 1, \cdots, n-1$
 $\partial_i^2 = 0$

Proof. In lecture note 1, Steven and Alex gave a detailed proof.

Definition 2.3. If $a_1 \cdots a_l$ is a reduced word of $w \in S_n$, then define $\partial_w = \partial_{a_1} \cdots \partial_{a_l}$.

Remark 2.4. Because of the fact that $\Gamma(w)$ is connected (where edges in Γ correspond to only the first two nil-Coxeter relations), ∂_w does not depend on the choice of reduced word, thus is well-defined.

On the other hand, if $a_1 \cdots a_l$ is not a reduced word, then $\partial_{a_1} \cdots \partial_{a_l} = 0$. To see that we let $1 \leq j < l$ be such that $u = a_1 \cdots a_j$ is a reduced word but $a_1 \cdots a_{j+1}$ is no longer reduced. Then there is another reduced expression of u that is ended with a_{j+1} : $b_1 \cdots a_{j+1}$. Now $\partial_{a_1} \cdots \partial_{a_j} \partial_{a_{j+1}} \partial_{a_l} = \partial_{b_1} \cdots \partial_{a_{j+1}} \partial_{a_{j+1}} \cdots \partial_{a_l} = 0$ by the third relation.

From above consideration, we can conclude

(*)
$$\partial_u \partial_v = \begin{cases} \partial_{uv} & \text{if } \ell(uv) = \ell(u) + \ell(v) \\ 0 & \text{otherwise} \end{cases}$$

Lemma 2.5. $s_i \circ \partial_w = \partial_w$ if and only if $\ell(iw) = \ell(w) - 1$

 ${\it Proof.}$

$$s_i \circ \partial_w = \partial_w \Leftrightarrow \partial_i \partial_w = 0 \text{ (by definition)}$$
$$\Leftrightarrow \ell(s_i w) = \ell(w) - 1 \text{ (by *)}$$

Proposition 2.6. If w_0 is the longest element of S_n , then

$$\partial_{w_0} = a_{\delta}^{-1} \sum_{w \in \mathcal{S}_n} \epsilon(w) w$$

where

$$a_{\delta} = \prod_{1 \le i < j \le n} (x_i - x_j)$$

is the Vandermond determinant, and $\epsilon(w)$ is the sign of w.

Proof. By definition, for any $v \in S_n$, ∂_v can be written of the form

$$\partial_v = \sum_{w \in \mathcal{S}_n} c_{v,w} w$$

In particular, we can write $\partial_w = \sum_{w \in S_n} c_w w$. By above lemma, we have $s_i \partial_{w_0} = \partial_{w_0}$ for any $i = 1, \dots, n-1$, thus $u \partial_{w_0} = \partial_{w_0}$ for any $u \in S_n$. This implies

$$\sum_{w \in \mathcal{S}_n} c_w w = u \sum_{w \in \mathcal{S}_n} c_w w = \sum_{w \in \mathcal{S}_n} (u. c_w) (uw)$$

Comparing the coefficient, we get $c_{uw} = u. c_w$. Thus if we know the coefficient c_w for some w, then we can derive c_w for all w. Indeed, we claim that we know

$$c_{w_0} = a_{\delta}^{-1} \epsilon(w_0)$$

Assume above claim, we note $w = ww_0w_0$, thus $c_w = ww_0c_{w_0} = \epsilon(ww_0)\epsilon(w_0)a_{\delta}^{-1} = \epsilon(w)a_{\delta}^{-1}$.

The only thing left to show is the claim. One reduced expression of w_0 is

$$w_0 = (s_{n-1} \cdots s_1)(s_{n-1} \cdots s_2) \cdots (s_{n-1})$$

So,

$$\partial_{w_0} = (\partial_{n-1} \cdots \partial_1)(\partial_{n-1} \cdots \partial_2) \cdots (\partial_{n-1})$$

We are interested in the coefficient of w_0 after "multiply out" the rhs. For n = 3, the least non-trivial case we see

$$\partial_{w_0} = \partial_2 \partial_1 \partial_2 = \frac{1}{x_2 - x_3} (1 - s_2) \frac{1}{x_1 - x_2} (1 - s_1) \frac{1}{x_2 - x_3} (1 - s_2)$$

clearly $c_{w_0} = \frac{1}{x_2 - x_3} \frac{1}{x_1 - x_2} \frac{1}{x_2 - x_3} (-1)^3$, claim shown. The general case can be checked explicitly in a similar fashion.