
LECTURE 12: DIVIDED DIFFERENCE OPERATORS

WANG, QIANG

Definition 0.1. Let X = {x1, · · · , xn}, then si ∈ Sn acts on f ∈ Z[X] by switching
the xi and xi+1. That is,

si. f(x1, · · · , xi, xi+1, · · · , xn) = f(x1, · · · , xi+1, xi, · · · , xn)

For si ∈ Sn, define ∂i : Z[X] → Z[X] by

(∂if)(x1, · · · , xn) =
f(x1, · · · , xn)− si. f(x1, · · · , xn)

xi − xi+1

In another word, ∂i = (xi − xi+1)−1(1− si).

1. Graph of reduced words

Given w ∈ (W,S), we can define a colored graph Γ(w), called the graph of
reduced words of w, as follow. The nodes in this graph are the set of all reduced
words of w. Let u, v be two nodes of this graph, (i.e, two reduced work of w) then
u, v are connected by an edge colored (labeled) by a defining relation of (W,S) if
and only if u can be transformed to v (or vise versa) by one application of the given
defining relation.

It is clear that the defining relations s2
i = e are never used in Γ(w), for all nodes

in Γ(w) are reduced words.

Example 1.1. Let the Coxeter system be (S5), {s1, s2, s3, s4}), and let w = [31542]
in one-line notation, then one reduced word for w could be s2s3s4s3s1, we will just
code this word by its indices 23431. Let us show the connected component of Γ(w)
that contains this word. (As we will see later this is the whole graph)

23431

ttttttttt

JJJJJJJJJ

JJJJJJJJJ

$$JJJJJJJJJ

23413 24341 42341

23143 24314 42314

21343

JJJJJJJJJ

JJJJJJJJJ 24134

ttttttttt
42134

21434

Proposition 1.2. Given w ∈ (W,S), Γ(w) is connected.
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Proof. We prove the statement for the case of (Sn, {s1, · · · , sn−1}), the spirits are
the same for all other types of Coxeter group.

Induct on `(w). For the case `(w) ≤ 2 the statement clearly holds.
Now assume `(w) ≥ 3, let a = a1 · · · al and b = b1 · · · bl be two reduced words

of w. By E.P. b1w has a reduced expression of the form a1 · · · âk · · · al, for some
1 ≤ k ≤ l. Thus b1a1 · · · âk · · · al is another reduced expression of w.

First note that by induction, b2 · · · bl and a1 · · · âk · · · al are connected by a se-
quence of edges in Γ(b1w), thus b1b2 · · · bl and b1 · · · âk · · · al are connected by a
sequence of edges in Γ(w).

If k < l, then in Γ(wal), a1 · · · al−1 and b1 · · · âk · · · al−1 are connected by a
sequence of edges, thus in Γ(w), a1 · · · al and b1 · · · âk · · · al are connected by a
sequence of edges. Therefore a and b are connected in Γ(w).

If k = l, then either a1 and b1 are consecutive or not. If they are not, then
b1a1 · · · al−1 and a1b1a2 · · · al−1 are connected by a single edge labeled by a1b1 =
b1a1. Now in Γ(w), a and a1b1a2 · · · al−1 are connected by a sequence of edges
”lifted” from Γ(a1w), thus a and b are connected in Γ(w).

Finally, if k = l but a1 and b1 are consecutive, then by E.P. a1b1a1 · · · âj · · · al−1

for some 1 ≤ j ≤ l − 1 is another reduced word of w. If j = 1, · · · , l − 2 then we
just repeat about argument for the case k < l with b′ = a and a′ = b1a1 · · · al−1.
Otherwise if j = l − 1, in particular j > 1, then a1b1a1 · · · âj · · · al−1 is connected
to b1a1b1 · · · âj · · · al−1 by an edge labeled by a1b1a1 = b1a1b1 in Γ(w). Now we
note that b and b1a1b1 · · · âj · · · al−1 are connected in Γ(w) by lifting a path from
Γ(b1w), and a and a1b1a1 · · · âj · · · al−1 are connected in Γ(w) by lifting a path from
Γ(a1w), we are done. �

2. Properties of divided difference operators

Lemma 2.1. If f, g ∈ Z[X] then

∂i(f ∗ g) = (∂if) ∗ g + (si. f) ∗ (∂ig)

Proof.

∂i(f ∗ g) =
f ∗ g − si. (f ∗ g)

xi − xi+1

=
f ∗ g − (si. f) ∗ g + (si. f) ∗ g − si. (f ∗ g)

xi − xi+1

=
f ∗ g − (si. f) ∗ g

xi − xi+1
+

(si. f) ∗ g − (si. f) ∗ (si. g)
xi − xi+1

= (∂if) ∗ g + (si. f) ∗ (∂ig)

�

Theorem 2.2 (Nil-Coxeter relations).

∂i∂j = ∂j∂i for |i− j| > 1
∂i∂i+1∂i = ∂i+1∂i∂i+1 for i = 1, · · · , n− 1

∂2
i = 0

Proof. In lecture note 1, Steven and Alex gave a detailed proof. �

Definition 2.3. If a1 · · · al is a reduced word of w ∈ Sn, then define ∂w = ∂a1 · · · ∂al
.
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Remark 2.4. Because of the fact that Γ(w) is connected (where edges in Γ corre-
spond to only the first two nil-Coxeter relations), ∂w does not depends on the choice
of reduced word, thus is well-defined.

On the other hand, if a1 · · · al is not a reduced word, then ∂a1 · · · ∂al
= 0. To see

that we let 1 ≤ j < l be such that u = a1 · · · aj is a reduced word but a1 · · · aj+1

is no longer reduced. Then there is another reduced expression of u that is ended
with aj+1: b1 · · · aj+1. Now ∂a1 · · · ∂aj ∂aj+1∂al

= ∂b1 · · · ∂aj+1∂aj+1 · · · ∂al
= 0 by

the third relation.
From above consideration, we can conclude

(*) ∂u∂v =

{
∂uv if `(uv) = `(u) + `(v)
0 otherwise

Lemma 2.5. si ◦ ∂w = ∂w if and only if `(iw) = `(w)− 1

Proof.

si ◦ ∂w = ∂w ⇔ ∂i∂w = 0 (by definition)
⇔ `(siw) = `(w)− 1 (by *)

�

Proposition 2.6. If w0 is the longest element of Sn, then

∂w0 = a−1
δ

∑
w∈Sn

ε(w)w

where
aδ =

∏
1≤i<j≤n

(xi − xj)

is the Vandermond determinant, and ε(w) is the sign of w.

Proof. By definition, for any v ∈ Sn, ∂v can be written of the form

∂v =
∑

w∈Sn

cv,ww

In particular, we can write ∂w =
∑

w∈Sn
cww. By above lemma, we have si∂w0 =

∂w0 for any i = 1, · · · , n− 1, thus u∂w0 = ∂w0 for any u ∈ Sn. This implies∑
w∈Sn

cww = u
∑

w∈Sn

cww =
∑

w∈Sn

(u. cw)(uw)

Comparing the coefficient, we get cuw = u. cw. Thus if we know the coefficient cw

for some w, then we can derive cw for all w. Indeed, we claim that we know

cw0 = a−1
δ ε(w0)

Assume above claim, we note w = ww0w0, thus cw = ww0cw0 = ε(ww0)ε(w0)a−1
δ =

ε(w)a−1
δ .

The only thing left to show is the claim. One reduced expression of w0 is

w0 = (sn−1 · · · s1)(sn−1 · · · s2) · · · (sn−1)

So,
∂w0 = (∂n−1 · · · ∂1)(∂n−1 · · · ∂2) · · · (∂n−1)
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We are interested in the coefficient of w0 after ”multiply out” the rhs. For n = 3,
the least non-trivial case we see

∂w0 = ∂2∂1∂2 =
1

x2 − x3
(1− s2)

1
x1 − x2

(1− s1)
1

x2 − x3
(1− s2)

clearly cw0 = 1
x2−x3

1
x1−x2

1
x2−x3

(−1)3, claim shown.
The general case can be checked explicitly in a similar fashion. �
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