LECTURE 13: YANG-BAXTER EQUATION

IGOR RUMANOV

Recall from previous lecture the definition of the divided difference operator

$$\partial_i = \frac{1}{x_i - x_{i+1}}(1 - s_i).$$

We showed:

Proposition 0.1. Let w_0 be the longest element, then

$$\partial_{w_0} = a_{\delta}^{-1} \sum_{w \in S_n} \varepsilon(w) w,$$

where $a_{\delta} = \prod_{1 \le i < j \le n} (x_i - x_j)$ and $\delta = (n - 1, n - 2, ..., 1, 0)$

One can define

$$a_{\alpha} = \sum_{w \in S_n} \varepsilon(w) w(x^{\alpha}),$$

 $(\alpha - \text{any } n\text{-tuple of integers}).$

The Schur functions (Schur polynomials):

$$s_{\alpha-\delta} = \frac{a_{\alpha}}{a_{\delta}}$$

standard form:

$$s_{\lambda} = \frac{a_{\lambda+\delta}}{a_{\delta}}.$$

Remark 0.2. $\partial_{w_0} x^{\alpha} = s_{\alpha-\delta}$ – the cause of using non-standard notation. **Definition 0.3.** Define isobaric divided difference operators π_i :

$$\pi_i f = \partial_i(x_i f), \quad f \in \mathbb{Z}[x_1, \dots, x_n].$$

This satisfies relations:

$$\pi_i \pi_j = \pi_j \pi_i, \qquad \text{if } |i - j| > 1,$$

$$\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1},$$

$$\pi_i^2 = \pi_i.$$

Exercise: Check that these relations are satisfied.

Date: February 4, 2009.

Remark 0.4. π_i are used to define Grothendieck polynomials similarly to ∂_i being used to define Schubert polynomials.

Associate to every permutation $w \in S_n$ an operator of degree 0:

$$\pi_w = \pi_{a_1} \dots \pi_{a_k}, \quad \text{where } a_1 \dots a_k \in \mathcal{R}(w)$$

Remark 0.5. This is independent of the reduced word since the graph $\Gamma(w)$ is connected and π_i satisfy the braid and commutation relations.

Proposition 0.6.

$$\pi_{w_0} f = a_{\delta}^{-1} \sum_{w \in S_n} \varepsilon(w) w(x^{\delta} f),$$

in particular,

$$\pi_{w_0} x^{\alpha} = s_{\alpha}.$$

Proof.
$$\pi_1 f = \partial_1(x_1 f), \pi_1 \pi_2 f = \partial_1(x_1 \partial_2(x_2 f)) = (\operatorname{can move} \partial_2 \operatorname{past} x_1) = \partial_1 \partial_2(x_1 x_2 f),$$

$$\pi_1 \dots \pi_r f = \partial_1 \dots \partial_r (x_1 \dots x_r f), \text{ also}$$
$$(1 \dots n - 1)(1 \dots n - 2) \dots (12)(1) \in \mathcal{R}(w_0)$$
$$\Rightarrow \pi_{w_0}(f) = \partial_{w_0}(x^{\delta} f)$$

Definition 0.7. $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)$ – sets of indeterminates. Partial resultant

$$\Delta(x,y) = \prod_{i+j \le n} (x_i - y_j).$$

Definition 0.8. To each $w \in S_n$ associate a double Schubert polynomial $\sigma_w(x, y)$:

$$\sigma_w(x,y) = \partial_{w^{-1}w_0} \Delta(x,y),$$

where the divided difference operators are taken w.r.t. x variable. The simple Schubert polynomials are the specialization

$$\sigma_w(x) = \sigma_w(x,0) = \partial_{w^{-1}w_0} x^{\delta}.$$

Remark 0.9. Thus there exist recursive formulas for Schubert polynomials:

$$\partial_u \sigma_w = \begin{cases} \sigma_{wu^{-1}}, & if \ l(wu^{-1}) = l(w) - l(u) \\ 0, & else \end{cases}$$

$$\partial_u \sigma_w = \partial_u \partial_{w^{-1}w_0} \Delta = \partial_{uw^{-1}w_0} \Delta,$$

if $l(uw^{-1}w_0) = l(u) + l(w^{-1}w_0)$ (see previous lecture, = 0 otherwise)

$$=\partial_{(wu^{-1})^{-1}w_0}\Delta = \sigma_{wu^{-1}}$$

$$l(u) = l(uw^{-1}w_0) - l(w^{-1}w_0) = l(w_0) - l(uw^{-1}) - l(w_0) + l(w^{-1})$$

1. YANG-BAXTER EQUATIONS

(see Fomin, Kirillov, "The Yang-Baxter equations, symmetric functions and Schubert polynomials", Discrete Math. 153 (1996), 123).

Goal – combinatorial formulas for Schubert polynomials.

Definition 1.1. The Iwahori-Hecke algebra \mathcal{H}_{ab}^n is generated by u_1, \ldots, u_{n-1} , satisfying the relations:

$$u_i u_j = u_j u_i, \ if \ |i - j| > 1,$$

 $u_i u_{i+1} u_i = u_{i+1} u_i u_{i+1},$

 $u_i^2 = au_i + b.$

Example 1.2. : $\mathcal{H}_{0,1}^n = \mathbb{C}[S_n]$, $\mathcal{H}_{1,0}^n =$ algebra of isobaric divided differences, $\mathcal{H} = \mathcal{H}_{0,0}^n$ – nil-Coxeter algebra. \mathcal{H} has a basis indexed by permutations with multiplication rule:

$$u \cdot w = \begin{cases} uw, & \text{if } l(uw) = l(u) + l(w) \\ 0, & \text{else} \end{cases}$$

Set $h_i(x) = 1 + xu_i$.

Lemma 1.3.

 \Leftrightarrow

$$h_i(x)h_i(y) = h(x+y),$$

$$h_i(x)h_j(y) = h_j(y)h_i(x), \ if |i-j| > 1,$$

$$h_i(x)h_j(x+y)h_i(y) = h_j(y)h_i(x+y)h_j(x), \ |i-j| = 1$$

(the Yang-Baxter Equation).

Exercise: Check it.

Definition 1.4. A configuration is a family C of n continuous strands which cut each vertical line at a unique point.

Each vertical line crosses every strand. Each pair of strands crosses at most once and at distinct x-coordinates.

 $w=s_3s_1s_2s_1s_3s_2$ is reduced since strands do not cross twice.

For $w = s_3 s_2 s_1 s_2 s_3 s_2$, $a_1 = 3$, $a_2 = 2$, ..., x_i – weight:

$$\phi(C) = h_{a_1}(x_{k_1} - x_{l_1})h_{a_2}(x_{k_2} - x_{l_2})\dots h_{a_m}(x_{k_m} - x_{l_m})$$

(subtracted argument is weight of the strand with the steeper slope).

Lemma 1.6. The weights of the strands being fixed, the polynomial $\phi(C)$ depends only on the permutation w underlying C.

Proof. $\mathcal{G}(w)$ - graph of reduced words is connected. Hence it suffices to show that $\phi(C)$ remains unchanged under the commutation and braid relations.

Commutation relations:

 $h_i(x-y)h_j(z-t) = h_j(z-t)h_i(x-y), \ if \ |i-j| > 1$

Braid relation:

