LECTURE 13: YANG-BAXTER EQUATION

IGOR RUMANOV

Recall from previous lecture the definition of the divided difference operator

$$
\partial_{i}=\frac{1}{x_{i}-x_{i+1}}\left(1-s_{i}\right) .
$$

We showed:

Proposition 0.1. Let w_{0} be the longest element, then

$$
\partial_{w_{0}}=a_{\delta}^{-1} \sum_{w \in S_{n}} \varepsilon(w) w
$$

where $a_{\delta}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$ and $\delta=(n-1, n-2, \ldots, 1,0)$
One can define

$$
a_{\alpha}=\sum_{w \in S_{n}} \varepsilon(w) w\left(x^{\alpha}\right)
$$

(α - any n-tuple of integers).
The Schur functions (Schur polynomials):

$$
s_{\alpha-\delta}=\frac{a_{\alpha}}{a_{\delta}}
$$

standard form:

$$
s_{\lambda}=\frac{a_{\lambda+\delta}}{a_{\delta}} .
$$

Remark 0.2. $\partial_{w_{0}} x^{\alpha}=s_{\alpha-\delta}$ - the cause of using non-standard notation.
Definition 0.3. Define isobaric divided difference operators π_{i} :

$$
\pi_{i} f=\partial_{i}\left(x_{i} f\right), \quad f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]
$$

This satisfies relations:

$$
\begin{gathered}
\pi_{i} \pi_{j}=\pi_{j} \pi_{i}, \quad \text { if }|i-j|>1, \\
\pi_{i} \pi_{i+1} \pi_{i}=\pi_{i+1} \pi_{i} \pi_{i+1} \\
\pi_{i}^{2}=\pi_{i}
\end{gathered}
$$

Exercise: Check that these relations are satisfied.

[^0]Remark 0.4. π_{i} are used to define Grothendieck polynomials similarly to ∂_{i} being used to define Schubert polynomials.

Asssociate to every permutation $w \in S_{n}$ an operator of degree 0 :

$$
\pi_{w}=\pi_{a_{1}} \ldots \pi_{a_{k}}, \quad \text { where } a_{1} \ldots a_{k} \in \mathcal{R}(w)
$$

Remark 0.5. This is independent of the reduced word since the graph $\Gamma(w)$ is connected and π_{i} satisfy the braid and commutation relations.

Proposition 0.6.

$$
\pi_{w_{0}} f=a_{\delta}^{-1} \sum_{w \in S_{n}} \varepsilon(w) w\left(x^{\delta} f\right)
$$

in particular,

$$
\pi_{w_{0}} x^{\alpha}=s_{\alpha}
$$

Proof. $\pi_{1} f=\partial_{1}\left(x_{1} f\right), \pi_{1} \pi_{2} f=\partial_{1}\left(x_{1} \partial_{2}\left(x_{2} f\right)\right)=\left(\operatorname{can}\right.$ move ∂_{2} past $\left.x_{1}\right)=\partial_{1} \partial_{2}\left(x_{1} x_{2} f\right)$,
\qquad
$\pi_{1} \ldots \pi_{r} f=\partial_{1} \ldots \partial_{r}\left(x_{1} \ldots x_{r} f\right)$, also

$$
(1 \ldots n-1)(1 \ldots n-2) \ldots(12)(1) \in \mathcal{R}\left(w_{0}\right)
$$

$$
\Rightarrow \pi_{w_{0}}(f)=\partial_{w_{0}}\left(x^{\delta} f\right)
$$

Definition 0.7. $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)-$ sets of indeterminates. Partial resultant

$$
\Delta(x, y)=\prod_{i+j \leq n}\left(x_{i}-y_{j}\right)
$$

Definition 0.8. To each $w \in S_{n}$ associate a double Schubert polynomial $\sigma_{w}(x, y)$:

$$
\sigma_{w}(x, y)=\partial_{w^{-1} w_{0}} \Delta(x, y)
$$

where the divided difference operators are taken w.r.t. x variable. The simple Schubert polynomials are the specialization

$$
\sigma_{w}(x)=\sigma_{w}(x, 0)=\partial_{w^{-1} w_{0}} x^{\delta}
$$

Remark 0.9. Thus there exist recursive formulas for Schubert polynomials:

$$
\begin{gathered}
\partial_{u} \sigma_{w}=\left\{\begin{array}{cc}
\sigma_{w u^{-1}}, & \text { if } l\left(w u^{-1}\right)=l(w)-l(u) \\
0, & \text { else }
\end{array}\right. \\
\partial_{u} \sigma_{w}=\partial_{u} \partial_{w^{-1} w_{0}} \Delta=\partial_{u w^{-1} w_{0}} \Delta
\end{gathered}
$$

if $l\left(u w^{-1} w_{0}\right)=l(u)+l\left(w^{-1} w_{0}\right)$ (see previous lecture, $=0$ otherwise)

$$
=\partial_{\left(w u^{-1}\right)^{-1} w_{0}} \Delta=\sigma_{w u^{-1}}
$$

$$
l(u)=l\left(u w^{-1} w_{0}\right)-l\left(w^{-1} w_{0}\right)=l\left(w_{0}\right)-l\left(u w^{-1}\right)-l\left(w_{0}\right)+l\left(w^{-1}\right)
$$

1. Yang-Baxter Equations

(see Fomin, Kirillov, "The Yang-Baxter equations, symmetric functions and Schubert polynomials", Discrete Math. 153 (1996), 123).

Goal - combinatorial formulas for Schubert polynomials.

Definition 1.1. The Iwahori-Hecke algebra $\mathcal{H}_{a b}^{n}$ is generated by u_{1}, \ldots, u_{n-1}, satisfying the relations:

$$
\begin{gathered}
u_{i} u_{j}=u_{j} u_{i}, \text { if }|i-j|>1, \\
u_{i} u_{i+1} u_{i}=u_{i+1} u_{i} u_{i+1} \\
u_{i}^{2}=a u_{i}+b
\end{gathered}
$$

Example 1.2. : $\mathcal{H}_{0,1}^{n}=\mathbb{C}\left[S_{n}\right]$,
$\mathcal{H}_{1,0}^{n}=$ algebra of isobaric divided differences,
$\mathcal{H}=\mathcal{H}_{0,0}^{n}$ - nil-Coxeter algebra. \mathcal{H} has a basis indexed by permutations with multiplication rule:

$$
u \cdot w=\left\{\begin{array}{cc}
u w, & \text { if } \\
0, & l(u w)=l(u)+l(w) \\
\text { else }
\end{array}\right.
$$

Set $h_{i}(x)=1+x u_{i}$.

Lemma 1.3.

$$
\begin{gathered}
h_{i}(x) h_{i}(y)=h(x+y), \\
h_{i}(x) h_{j}(y)=h_{j}(y) h_{i}(x), \text { if }|i-j|>1, \\
h_{i}(x) h_{j}(x+y) h_{i}(y)=h_{j}(y) h_{i}(x+y) h_{j}(x),|i-j|=1
\end{gathered}
$$

(the Yang-Baxter Equation).
Exercise: Check it.

Definition 1.4. A configuration is a family C of n continuous strands which cut each vertical line at a unique point.

Example 1.5. :

Each vertical line crosses every strand. Each pair of strands crosses at most once and at distinct x-coordinates.
$w=s_{3} s_{1} s_{2} s_{1} s_{3} s_{2}$ is reduced since strands do not cross twice.
For $w=s_{3} s_{2} s_{1} s_{2} s_{3} s_{2}, a_{1}=3, a_{2}=2, \ldots, x_{i}-$ weight:

$$
\phi(C)=h_{a_{1}}\left(x_{k_{1}}-x_{l_{1}}\right) h_{a_{2}}\left(x_{k_{2}}-x_{l_{2}}\right) \ldots h_{a_{m}}\left(x_{k_{m}}-x_{l_{m}}\right)
$$

(subtracted argument is weight of the strand with the steeper slope).

Lemma 1.6. The weights of the strands being fixed, the polynomial $\phi(C)$ depends only on the permutation w underlying C.
Proof. $\mathcal{G}(w)$ - graph of reduced words is connected. Hence it suffices to show that $\phi(C)$ remains unchanged under the commutation and braid relations.

Commutation relations:

$$
h_{i}(x-y) h_{j}(z-t)=h_{j}(z-t) h_{i}(x-y), \text { if }|i-j|>1
$$

Braid relation:

$$
h_{i}(y-z) h_{i+1}(x-z) h_{i}(x-y)=h_{i+1}(x-y) h_{i}(x-z) h_{i+1}(y-z)
$$

- the Yang-Baxter equation.

[^0]: Date: February 4, 2009.

