LECTURE 14: YANG-BAXTER EQUATION AND DOUBLE SCHUBERT POLYNOMIALS

CARLOS BARRERA-RODRIGUEZ

1. The Yang-Baxter Equation (Continued). Double Schubert Polynomials.

Last time we talked about the nil-Coxeter algebra, and we saw that the nilCoxeter relations for $u_{1}, u_{2}, \ldots u_{n-1}$ are given by

$$
\begin{aligned}
u_{i} u_{j} & =u_{j} u_{i} \quad \text { for }|i-j|>1 \\
u_{i} u_{i+1} u_{i} & =u_{i+1} u_{i} u_{i+1} \\
u_{i}^{2} & =0
\end{aligned}
$$

We showed the following result for $h_{i}(x)=1+x u_{i}(x)$.

Lemma 1.1.

$$
\begin{aligned}
h_{i}(x) h_{i}(y) & =h_{i}(x+y) \\
h_{i}(x) h_{j}(y) & =h_{j}(y) h_{i}(x) \quad|i-j|>1 \\
h_{i}(x) h_{j}(x+y) h_{i}(y) & =h_{j}(y) h_{i}(x+y) h_{j}(x) \quad|i-j|=1
\end{aligned}
$$

The last relation is called the Yang-Baxter equation.
We also learned that we can associate to a strand configuration \mathcal{C} a polynomial

Figure 1. Strand representation
$\Phi(\mathcal{C})$ in $\mathcal{H}[x]$. In the above example $\Phi(\mathcal{C})=h_{s_{2}}\left(x_{3}-x_{2}\right) h_{s_{1}}\left(x_{3}-x_{1}\right)$.
Next we consider a particular configuration, as shown in the following figure.
Date: February 6th, 2009.

Figure 2. Particular configuration

$$
\Phi\left(C_{\mathrm{sp}}\right)=\prod_{d=2-n}^{n-2} \prod_{\substack{i-j=d \\ i+j \leq n}} h_{i+j-1}\left(x_{i}-y_{j}\right)
$$

Note that the order of the factors in the product is important! Deforming Fig. 2 we obtain Fig. 3 (using only braid and commutation relations which we showed last time do not change $\Phi\left(\mathcal{C}_{\mathrm{sp}}\right)$), which simplifies the calculation of Φ.

Figure 3. Simplified particular configuration

By this simple observation it is easy to see that we can rewrite Φ as:

$$
\Phi\left(\mathcal{C}_{\mathrm{sp}}\right)=\prod_{i=1}^{n-1} \prod_{j=n-i}^{1} h_{i+j-1}\left(x_{i}-y_{j}\right)
$$

where recall $h_{i}(x)=1+x u_{i}$.
Theorem 1.2. If one decomposes $\Phi\left(\mathcal{C}_{s p}\right)$ in $\mathcal{H}[x, y]$ as

$$
\Phi\left(\mathcal{C}_{s p}\right)=\sum_{w \in S_{n}} \Phi_{w}\left(\mathcal{C}_{s p}\right) w
$$

then

$$
\Phi_{w}\left(\mathcal{C}_{s p}\right)=\sigma_{w}(x, y)
$$

Proof. Let us first look at

$$
\Phi_{w_{0}}\left(\mathcal{C}_{\mathrm{sp}}\right)=\prod_{i+j \leq n}\left(x_{i}-y_{j}\right)=\Delta(x, y)=\sigma_{w_{0}}(x, y)
$$

Recall $\partial_{i} \sigma_{w}=\sigma_{w s_{i}}$ if $\ell\left(w s_{i}\right)=\ell(w)-1$. Hence it remains to show that the same recursion holds for the coefficient polynomials in $\Phi\left(\mathcal{C}_{\mathrm{sp}}\right)$. But we have that

$$
\partial_{i} \Phi_{w s_{i}}\left(\mathcal{C}_{\mathrm{sp}}\right)=\Phi_{w}\left(\mathcal{C}_{\mathrm{sp}}\right) \quad \text { for } \ell\left(w s_{i}\right)=\ell(w)-1
$$

if and only if

$$
\partial_{i} \Phi\left(\mathcal{C}_{\mathrm{sp}}\right)=\Phi\left(\mathcal{C}_{\mathrm{sp}}\right) u_{i}
$$

Set

$$
H_{i}(x)=h_{n-1}(x) \cdots h_{i+1}(x) h_{i}(x)
$$

Then note that

$$
\begin{aligned}
H_{i}(x) & =H_{i+1}(x) h_{i}(x) \\
h_{i}(x) H_{j}(y) & =H_{j}(y) h_{i}(x) \text { if } j>i+1, \\
h_{i}(x) h_{i}(-x) & =1
\end{aligned}
$$

Lemma 1.3.

(a) $H_{i}(x) H_{i}(y)=H_{i}(y) H_{i}(x)$
(b) $H_{i}(x) H_{i+1}(y)-H_{i}(y) H_{i+1}(x)=(x-y) H_{i}(x) H_{i+1}(y) u_{i}$.

Proof.
(a) This follows be descending induction on i :

$$
\begin{aligned}
H_{i}(x) H_{i}(y) & =H_{i+1} h_{i}(x) H_{i+2}(y) h_{i+1}(y) h_{i}(y) \\
& =H_{i+1}(x) H_{i+2}(y) h_{i}(x) h_{i+1}(y) h_{i}(y-x) h_{i}(x) \\
& =H_{i+1}(x) H_{i+2}(y) h_{i+1}(y-x) h_{i}(y) h_{i+1}(x) h_{i}(x)
\end{aligned}
$$

(this latter is theY-B eq.)
$=H_{i+1}(x) H_{i+1}(y) h_{i+1}(-x) h_{i}(y) h_{i+1}(x) h_{i}(x)$
$=H_{i+1}(y) H_{i+1}(x) h_{i+1}(-x) h_{i}(y) h_{i+1}(x) h_{i}(x)$
(but $H_{i+2}(x)=H_{i+1}(x) h_{i+1}(-x)$)
$=H_{i+1}(y) h_{i}(y) H_{i+2}(x) h_{i+1}(x) h_{i}(x)$
$=H_{i}(y) H_{i}(x)$
(b)

$$
\begin{aligned}
H_{i}(x) H_{i+1}(y)-H_{i}(y) H_{i+1}(x)= & H_{i}(x) H_{i}(y) h_{i}(-y)-H_{i}(y) H_{i}(x) h_{i}(-x) \\
& \quad\left(\text { and } h_{i}(-y)=1-y u_{i}, \quad h_{i}(-x)=1-x u_{i}\right) \\
= & H_{i}(x) H_{i}(y)\left(-y u_{i}\right)+H_{i}(x) H_{i}(y) x u_{i} \\
= & (x-y) H_{i}(x) H_{i}(y) u_{i} \\
= & (x-y) H_{i}(x) H_{i+1}(y)\left(1+y u_{i}\right) u_{i} \\
& \left.\quad \text { (but } 1+y u_{i}=0\right) \\
= & (x-y) H_{i}(x) H_{i+1}(y) u_{i}
\end{aligned}
$$

Lemma 1.4.

(a) $h_{i}(x-y)=H_{i+1}^{-1}(x) H_{i}^{-1}(y) H_{i}(x) H_{i+1}(y)$
(b) $h_{n-1}\left(x-y_{n-1}\right) \cdots h_{i}\left(x-y_{i}\right)=H_{n-1}^{-1}\left(y_{n-1}\right) \cdots H_{i}^{-1}\left(y_{i}\right) H_{i}(x) H_{i+1}\left(y_{i}\right) \cdots H_{n}\left(y_{n-1}\right)$

Proof.
(a) Observe that the equality is equivalent to

$$
H_{i}(y) H_{i+1}(x) h_{i}(x) h_{i}(-y)=H_{i}(x) H_{i+1}(y)
$$

but this latter is equivalent to $H_{i}(y) H_{i}(x)=H_{i}(x) H_{i}(y)$, which corresponds precisely to part (a) of the previous lemma.
(b) This part can be proved by descending induction on i and the previous lemma. We leave the details to the reader.

We now complete the proof of Theorem 1.2. Using Lemma 1.4 (b) we find that

$$
\begin{aligned}
\Phi\left(\mathcal{C}_{\mathrm{sp}}\right) & =\prod_{i=1}^{n-1} \prod_{j=n-i}^{1} h_{i+j-1}\left(x_{i}-y_{j}\right) \\
& =\sigma^{-1}(y) \sigma(x)
\end{aligned}
$$

where $\sigma(x)=H_{1}\left(x_{1}\right) H_{2}\left(x_{2}\right) \cdots H_{n-1}\left(x_{n-1}\right)$. Hence it remains to show that

$$
\partial_{i} \sigma(x)=\sigma(x) u_{i} .
$$

But we can see that

$$
\begin{aligned}
\partial_{i} \sigma(x) & =\frac{H_{1}\left(x_{1}\right) \cdots H_{n-1}\left(x_{n-1}\right)-H_{1}\left(x_{1}\right) \cdots H_{i}\left(x_{i+1}\right) H_{i+1}\left(x_{i}\right) \cdots H_{n-1}\left(x_{n-1}\right)}{\left(x_{i}-x_{i+1}\right)} \\
& =H_{1}\left(x_{1}\right) \cdots H_{n-1}\left(x_{n-1}\right) u_{i} \\
& =\sigma(x) u_{i}
\end{aligned}
$$

by Lemma 1.3 (b).

