
LECTURE 15: PROPRIETIES OF (DOUBLE) SCHUBERT
POLYNOMIALS

MIHAELA IFRIM

We recall from our previous lecture that:

φ(Csp) =
n−1∏
i=1

1∏
j=n−i

hi+j−1(xi − yj) =
∑

w∈Sn

σw(x, y)w.

We also defined hi(x) = 1 + xui where ui are elements of the nilCoxeter alge-
bra.

A slightly reformulation of the statement above is as follows:
Let Hi(x) = hn−1(x) . . . hi(x). Recall that we showed last time that [Hi(x),Hi(y)] =
0. We defined

σ(x) = H1(x1)H2(x2) . . .Hn−1(xn−1)

and we showed last time

φ(Csp) = σ−1(y)σ(x).

We can see (combining the facts above) that

σw(x, y) = 〈σ−1(y)σ(x), w〉,

where 〈v, w〉 = δvw.
The single Schubert polynomial can be written as

σw(x) = 〈σ(x), w〉 = 〈H1(x1)H2(x2) . . .Hn−1(xn−1), w〉.

Example 0.1. Let us consider S3. We compute

φ(Csp) = h2(x1 − y2)h1(x1 − y1)h2(x2 − y1)

= (1 + (x1 − y2)u2)(1 + (x1 − y1)u1)(1 + (x2 − y1)u2).
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Using φ(Csp) =
∑

w∈Sn

σw(x, y)w we obtain:

σs2s1s2(x, y) = (x1−y2)(x1−y1)(x2−y1)

σs1s2 = (x1 − y1)(x2 − y1)
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σs2s1 = (x1 − y2)(x1 − y1)

σs1 = (x1 − y1)
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σs2 = (x1 − y2) + (x2 − y1)

σ1 = 1

1. Symmetries

We observe that reflecting a configuration associated to a particular w along a
vertical line yields a configuration asociated to w−1.
The weight contributions of the crossings remain the same if we replace xi by −yi

and yj by −xj .

Corollary 1.1. For any w ∈ Sn

σw−1(x, y) = σw(−y,−x) = ε(w)σw(y, x).
4



Proof. This follows from the above explanation. �

Recall: ∂uσw =

{
σwu−1 if `(wu−1) = `(w)− `(u)
0 else

Hence, ∂iσw = 0 ⇔ `(wsi) > `(w) ⇔ σw is symmetric in xi and xi+1.

Corollary 1.2.
(1) σw(x, y) is symmetric in xi and xi+1 ⇔ w(i) < w(i + 1).
(2) σw(x, y) is symmetric in yi and yi+1 ⇔ w−1(i) < w−1(i + 1).

Remark 1.3. We have σsi(x, y) = x1 + · · ·+ xi − y1 − · · · − yi. If r is the greatest
descent of w i.e. r is greatest such that w(r) > w(r + 1) and if s is the greatest
descent of w−1 then σw(x, y) is a polynomal in x1, . . . , xr, and in y1, . . . , ys.
(The proof of this last remark is left like an exercise. Hint: Note that σw(x, y) is
symmetric in xr+1, . . . , xn and it can also be checked that xn does not appear.)

2. Stability

Denote by in : Sn → Sn+1 the embedding that fixes n + 1. The coresponding
configuration is obtained by adjoing a strand on top that does not intersect any
other strand.

Corollary 2.1. w ∈ Sn , σw = σin(w).

More generally if u ∈ Sn , v ∈ Sm, define u×v = [u(1), . . . , u(n), n+v(1), . . . , n+
v(m)] ∈ Sn+m.

Corollary 2.2. Let u ∈ Sn , v ∈ Sm, σu×v = σu ·σ1n×v. In particular we have the
stability condition σu = σu×1s .

3. Stable Schubert polynomials or Stanley symmetric fuctions

Definition 3.1. Fw(x) = lim
s→∞

σ1s×w(x) = 〈H1(x1)H1(x2) . . . , w〉.

To justify the second equality in the definition, note that

σw(x) = 〈Hn−1
1 (x1) . . .Hn−1

n−1 (xn−1), w〉,

where the top index in Hn−1
i (x) indicates that the product over the hj in Hi starts

at n− 1. Let w = sa1 . . . sak
be a reduced expression of w. Replacing w by 1s × w

we obtain
〈Hn+s−1

1 (x1) . . .Hn+s−1
n+s−1 (xn+s−1), sai+s . . . sak+s〉

=〈Hn−1
1 (x1) . . .Hn−1

1 (xs+1)Hn−1
2 (xs+2) . . .Hn−1

n−1 (xn+s−1), sa1 . . . sak
〉.

If we take the limit when s →∞ we get < Hn−1
1 (x1)Hn−1

1 (x2) . . . , w > .

Remark 3.2. Since [Hi(x),Hi(y)] = 0, Fw(x) is symmetric in x1, x2, . . . .

We recall that φ(Csp) = σ−1(y)σ(x). Setting y = 0 ⇒ σ(x) =
∑

w∈sn

σw(x)w (∗)

Setting x = 0 ⇒ σ−1(y) =
∑

w∈Sn

σw(0, y)w =
∑

w∈Sn

ε(w)σw−1(y, 0)w =
∑

w∈sn

σw−1(−y, 0)w.

The second equality holds since we have symmetry.
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Reformulating, we get:

σ−1(y) =
∑

w∈Sn

σw−1(−y)w (∗∗)

Proposition 3.3. σw(x, y) =
∑

w=v−1u,`(w)=`(u)+`(v)

σu(x)σv(−y).

Proof. Just multiply (*) and (**) we get the desired result. �

Setting w = w0 we obtain the Cauchy formula for Schubert polynomials:

Corollary 3.4. ∏
i+j≤n

(xi − yj) =
∑

w∈Sn

σw(x)σww0(−y).
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