LECTURE 15: PROPRIETIES OF (DOUBLE) SCHUBERT POLYNOMIALS

MIHAELA IFRIM

We recall from our previous lecture that:

$$
\phi\left(C_{s p}\right)=\prod_{i=1}^{n-1} \prod_{j=n-i}^{1} h_{i+j-1}\left(x_{i}-y_{j}\right)=\sum_{w \in S_{n}} \sigma_{w}(x, y) w
$$

We also defined $h_{i}(x)=1+x u_{i}$ where u_{i} are elements of the nilCoxeter algebra.

A slightly reformulation of the statement above is as follows:
Let $H_{i}(x)=h_{n-1}(x) \ldots h_{i}(x)$. Recall that we showed last time that $\left[H_{i}(x), H_{i}(y)\right]=$ 0 . We defined

$$
\sigma(x)=H_{1}\left(x_{1}\right) H_{2}\left(x_{2}\right) \ldots H_{n-1}\left(x_{n-1}\right)
$$

and we showed last time

$$
\phi\left(C_{s p}\right)=\sigma^{-1}(y) \sigma(x)
$$

We can see (combining the facts above) that

$$
\sigma_{w}(x, y)=\left\langle\sigma^{-1}(y) \sigma(x), w\right\rangle
$$

where $\langle v, w\rangle=\delta_{v w}$.
The single Schubert polynomial can be written as

$$
\sigma_{w}(x)=\langle\sigma(x), w\rangle=\left\langle H_{1}\left(x_{1}\right) H_{2}\left(x_{2}\right) \ldots H_{n-1}\left(x_{n-1}\right), w\right\rangle
$$

Example 0.1. Let us consider S_{3}. We compute

$$
\begin{aligned}
\phi\left(C_{s p}\right) & =h_{2}\left(x_{1}-y_{2}\right) h_{1}\left(x_{1}-y_{1}\right) h_{2}\left(x_{2}-y_{1}\right) \\
& =\left(1+\left(x_{1}-y_{2}\right) u_{2}\right)\left(1+\left(x_{1}-y_{1}\right) u_{1}\right)\left(1+\left(x_{2}-y_{1}\right) u_{2}\right)
\end{aligned}
$$

Date: February 9th, 2009.

Using $\phi\left(C_{s p}\right)=\sum_{w \in S_{n}} \sigma_{w}(x, y) w$ we obtain:

$\sigma_{s_{2} s_{1} s_{2}}(x, y)=\left(x_{1}-y_{2}\right)\left(x_{1}-y_{1}\right)\left(x_{2}-y_{1}\right)$

$$
\sigma_{s_{1} s_{2}}=\left(x_{1}-y_{1}\right)\left(x_{2}-y_{1}\right)
$$

$$
\sigma_{s_{2} s_{1}}=\left(x_{1}-y_{2}\right)\left(x_{1}-y_{1}\right)
$$

$$
\sigma_{s_{1}}=\left(x_{1}-y_{1}\right)
$$

$$
\sigma_{s_{2}}=\left(x_{1}-y_{2}\right)+\left(x_{2}-y_{1}\right)
$$

$\sigma_{1}=1$

1. Symmetries

We observe that reflecting a configuration associated to a particular w along a vertical line yields a configuration asociated to w^{-1}.
The weight contributions of the crossings remain the same if we replace x_{i} by $-y_{i}$ and y_{j} by $-x_{j}$.

Corollary 1.1. For any $w \in S_{n}$

$$
\sigma_{w-1}(x, y)=\sigma_{w}(-y,-x)=\varepsilon(w) \sigma_{w}(y, x)
$$

Proof. This follows from the above explanation.
Recall: $\partial_{u} \sigma_{w}= \begin{cases}\sigma_{w u^{-1}} & \text { if } \ell\left(w u^{-1}\right)=\ell(w)-\ell(u) \\ 0 & \text { else }\end{cases}$
Hence, $\partial_{i} \sigma_{w}=0 \Leftrightarrow \ell\left(w s_{i}\right)>\ell(w) \Leftrightarrow \sigma_{w}$ is symmetric in x_{i} and x_{i+1}.

Corollary 1.2.

(1) $\sigma_{w}(x, y)$ is symmetric in x_{i} and $x_{i+1} \Leftrightarrow w(i)<w(i+1)$.
(2) $\sigma_{w}(x, y)$ is symmetric in y_{i} and $y_{i+1} \Leftrightarrow w^{-1}(i)<w^{-1}(i+1)$.

Remark 1.3. We have $\sigma_{s_{i}}(x, y)=x_{1}+\cdots+x_{i}-y_{1}-\cdots-y_{i}$. If r is the greatest descent of w i.e. r is greatest such that $w(r)>w(r+1)$ and if s is the greatest descent of w^{-1} then $\sigma_{w}(x, y)$ is a polynomal in x_{1}, \ldots, x_{r}, and in y_{1}, \ldots, y_{s}.
(The proof of this last remark is left like an exercise. Hint: Note that $\sigma_{w}(x, y)$ is symmetric in x_{r+1}, \ldots, x_{n} and it can also be checked that x_{n} does not appear.)

2. Stability

Denote by $i_{n}: S_{n} \rightarrow S_{n+1}$ the embedding that fixes $n+1$. The coresponding configuration is obtained by adjoing a strand on top that does not intersect any other strand.

Corollary 2.1. $w \in S_{n}, \sigma_{w}=\sigma_{i_{n}(w)}$.
More generally if $u \in S_{n}, v \in S_{m}$, define $u \times v=[u(1), \ldots, u(n), n+v(1), \ldots, n+$ $v(m)] \in S_{n+m}$.
Corollary 2.2. Let $u \in S_{n}, v \in S_{m}, \sigma_{u \times v}=\sigma_{u} \cdot \sigma_{1^{n} \times v}$. In particular we have the stability condition $\sigma_{u}=\sigma_{u \times 1^{s}}$.

3. Stable Schubert polynomials or Stanley symmetric fuctions

Definition 3.1. $F_{w}(x)=\lim _{s \rightarrow \infty} \sigma_{1^{s} \times w}(x)=\left\langle H_{1}\left(x_{1}\right) H_{1}\left(x_{2}\right) \ldots, w\right\rangle$.
To justify the second equality in the definition, note that

$$
\sigma_{w}(x)=\left\langle H_{1}^{n-1}\left(x_{1}\right) \ldots H_{n-1}^{n-1}\left(x_{n-1}\right), w\right\rangle
$$

where the top index in $H_{i}^{n-1}(x)$ indicates that the product over the h_{j} in H_{i} starts at $n-1$. Let $w=s_{a_{1}} \ldots s_{a_{k}}$ be a reduced expression of w. Replacing w by $1^{s} \times w$ we obtain

$$
\begin{aligned}
& \left\langle H_{1}^{n+s-1}\left(x_{1}\right) \ldots H_{n+s-1}^{n+s-1}\left(x_{n+s-1}\right), s_{a_{i+s}} \ldots s_{a_{k}+s}\right\rangle \\
= & \left\langle H_{1}^{n-1}\left(x_{1}\right) \ldots H_{1}^{n-1}\left(x_{s+1}\right) H_{2}^{n-1}\left(x_{s+2}\right) \ldots H_{n-1}^{n-1}\left(x_{n+s-1}\right), s_{a_{1}} \ldots s_{a_{k}}\right\rangle .
\end{aligned}
$$

If we take the limit when $s \rightarrow \infty$ we get $<H_{1}^{n-1}\left(x_{1}\right) H_{1}^{n-1}\left(x_{2}\right) \ldots, w>$.

Remark 3.2. Since $\left[H_{i}(x), H_{i}(y)\right]=0, F_{w}(x)$ is symmetric in x_{1}, x_{2}, \ldots.
We recall that $\phi\left(C_{s p}\right)=\sigma^{-1}(y) \sigma(x)$. Setting $y=0 \Rightarrow \sigma(x)=\sum_{w \in s_{n}} \sigma_{w}(x) w \quad(*)$
Setting $x=0 \Rightarrow \sigma^{-1}(y)=\sum_{w \in S_{n}} \sigma_{w}(0, y) w=\sum_{w \in S_{n}} \varepsilon(w) \sigma_{w^{-1}}(y, 0) w=\sum_{w \in s_{n}} \sigma_{w^{-1}}(-y, 0) w$.
The second equality holds since we have symmetry.

Reformulating, we get:

$$
\sigma^{-1}(y)=\sum_{w \in S_{n}} \sigma_{w^{-1}}(-y) w(* *)
$$

Proposition 3.3. $\sigma_{w}(x, y)=\sum_{w=v^{-1} u, \ell(w)=\ell(u)+\ell(v)} \sigma_{u}(x) \sigma_{v}(-y)$.
Proof. Just multiply $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ we get the desired result.
Setting $w=w_{0}$ we obtain the Cauchy formula for Schubert polynomials:

Corollary 3.4.

$$
\prod_{i+j \leq n}\left(x_{i}-y_{j}\right)=\sum_{w \in S_{n}} \sigma_{w}(x) \sigma_{w w_{0}}(-y)
$$

