## LECTURE 16: COMBINATORIAL FORMULA FOR SINGLE SCHUBERT POLYNOMIALS AND RC-GRAPHS

## JOSHUA CLEMENT

1. Combinatorial formula for single Schubert polynomials

**Theorem 1.** Combinatorial Theorem:

$$\sigma_w (x) = \sum_{\underline{a} \in R(w)} \sum_{\underline{b} \in C(\underline{a})} x_{b_1} \dots x_{b_\ell}$$

where  $C(\underline{a})$  is the set of increasing  $\underline{a}$  -compatible words,  $\ell$  is the length of w, and

(1)  $b_1 \leq b_2 \leq \cdots \leq b_{\ell}$ (2)  $b_i \leq a_i$ (3)  $b_i < b_{i+1}$  if  $a_i < a_{i+1}$ 

*Proof.* We have

$$\phi(\mathcal{C}_{sp})|_{y=0} = \prod_{i=1}^{n-1} \prod_{j=n-i}^{1} h_{i+j-1}(x_i) = \sigma(x)$$

(Recall:  $h_i(x) = 1 + xu_i$ , where the  $u_i$ 's satisfy the nilCoxeter algebra) We need to expand the product and look for the coefficient of w; the  $b_i$ 's are indices of the x's, and each  $h_{i+j-1}$  contributes  $u_{i+j-1}$ .

We get part (2) from the fact that  $i \leq i+j-1$ , and we get (3) because since the product  $\prod_{i=n-i}^{1}$  is decreasing, we must have  $b_i < b_{i+1}$  if  $a_i < a_{i+1}$ .

**Example 2.** Consider  $S_3$ . Then  $\sigma(x) = h_2(x_1)h_1(x_1)h_2(x_2) = (1 + x_1u_2)(1 + x_1u_1)(1 + x_2u_2)$ . Note that  $(1 + x_1u_2)(1 + x_1u_1)$  from the term i = 1 in the inner product, which is decreasing, and  $(1 + x_2u_2)$  comes from i = 2.

Aim 1: We want to prove that the Schubert polynomials  $\sigma_w(x), w \in S_{\infty}$ , form an integral basis for  $Z[x_1, x_2, \ldots]$ . Aim 2: Monk's Bulo-expansion of  $\sigma_{-}$   $\sigma_{-}$ 

Aim 2: Monk's Rule—expansion of  $\sigma_w \sigma_{s_i}$ 

## 2. RC-GRAPHS

**Reference:** N. Bergeron, S. Billey, *RC graphs and Schubert Polynomials*, Exp. Math **2** (1993) 257-269

**Definition 3.** Let  $\underline{a} = a_1 a_2 \dots a_p \in R(w)$  and  $\underline{\alpha} = \alpha_1 \dots \alpha_p \in C(\underline{a})$ . The reduced-word compatible sequence graph or rc-graph for short is

$$D(\underline{a},\underline{\alpha}) = \{ (\alpha_k, a_k - \alpha_k + 1) \mid 1 \le k \le p \}.$$

Set

$$\mathcal{RC}(w) = \{ D(\underline{a}, \underline{\alpha}) \mid \underline{a} \in R(w), \underline{\alpha} \in C(\underline{a}) \}.$$



Example 4.  $\underline{a} = 521345, \underline{\alpha} = 111235$ 

The plus signs indicate positions in  $D(\underline{a}, \underline{\alpha})$ ; note that if  $(i, j) \in D$ , then  $i+j \leq n$  if  $w \in S_n$ 

Algorithm to get  $w \in S_n$  from graph:

Each line alternates between going up and going to the right unless it hits a plus sign, in which case it goes through. Follow the strand labelled i from left to write to obtain w(i).

In the example we have w = [3, 1, 4, 6, 5, 2] (because w(1) = 3, w(2) = 1, etc.);  $\ell(w) = 6$  since we have 6 crossings.

Note that strands do not cross more than once.

**Remark 5.** The transpose  $D^t$  of an rc-graph  $D \in \mathcal{RC}(w)$  is an rc-graph in  $\mathcal{RC}(w^{-1})$ .

Denote by  $\rho: \mathcal{RC}(w) \to \mathcal{RC}(w^{-1})$  the bijection mapping  $D \mapsto D^t$ . Notation: For  $D \in \mathcal{RC}(w)$  let  $x_D = \prod_{(i,j) \in D} x_i$ .

Corollary 6.

$$\sigma_w(x) = \Sigma_{D(a,\alpha) \in \mathcal{RC}(w)} x_{D(a,\alpha)}$$

Date: February 11th, 2009.

## 3. Moves on RC-graphs

Let  $w \in S_{\infty}$  and  $D \in \mathcal{RC}(w)$ . A ladder move  $L_{ij}$  is defined as:



A chute move  $C_{ij}$  is defined as:



**Remark 7.**  $\rho(L_{ij}(D)) = C_{ji}(\rho(D))$ , i.e.  $L_{ij}$  and  $C_{ij}$  are dual to each other. **Lemma 8.** Ladder and chute moves preserve the permutation associated to D:

$$\operatorname{perm} C_{ij}(D) = \operatorname{perm}(D)$$
  
 $\operatorname{perm} L_{ij}(D) = \operatorname{perm}(D)$ 

*Proof.* We use a proof by picture. The strands in the region of a chute move look like this:



Following each strand one can easily check that each letter still gets mapped to the same position.  $\hfill \Box$ 

**Lemma 9.**  $D \in \mathcal{RC}(w)$  is the result of a chute move (or, equivalently, admits an inverse chute move) if and only if there exists  $(i, j) \notin D$  such that  $(i + 1, j) \in D$ .

**Remark 10.** Geometrically, an inverse chute move cannot be applied if all +'s in each column are clumped at the top.

*Proof.* Suppose  $(i, j) \notin D$  and  $(i + 1, j) \in D$ . Look right along row i + 1 for the smallest k > j such that  $(i + 1, k) \notin D$  (There must be such a k since D contains only finitely many +).



Claim:  $(i, k) \notin D$ 

*Proof.* Suppose this is not true, i.e.  $(i, k) \in D$ . Then we would have:



This is impossible because strands cannot cross twice.

Let *m* be the position of the last dot before *k*, that is m < k largest such that  $(i,m) \notin D$ . Therefore the + at (i+1,m) can be moved to (i,k) by an inverse chute move.