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JOSHUA CLEMENT

1. Combinatorial formula for single Schubert polynomials

Theorem 1. Combinatorial Theorem:

σw (x) =
∑

a ∈ R(w)

∑
b ∈ C(a)

xb1 . . . xb`

where C(a) is the set of increasing a -compatible words, ` is the length of w, and
(1) b1 ≤ b2 ≤ · · · ≤ b`

(2) bi ≤ ai

(3) bi < bi+1 if ai < ai+1

Proof. We have

φ(Csp) |y=0 =
n−1∏
i=1

1∏
j=n−i

hi+j−1(xi) = σ(x)

(Recall: hi(x) = 1 + xui, where the ui’s satisfy the nilCoxeter algebra) We need to
expand the product and look for the coefficient of w; the bi’s are indices of the x’s,
and each hi+j−1 contributes ui+j−1.

We get part (2) from the fact that i ≤ i + j − 1, and we get (3) because since
the product

∏1
j=n−i is decreasing, we must have bi < bi+1 if ai < ai+1. �

Example 2. Consider S3. Then σ(x) = h2(x1)h1(x1)h2(x2) = (1 + x1u2)(1 +
x1u1)(1 + x2u2). Note that (1 + x1u2)(1 + x1u1) from the term i = 1 in the inner
product, which is decreasing, and (1 + x2u2) comes from i = 2.

Aim 1: We want to prove that the Schubert polynomials σw(x), w ∈ S∞, form
an integral basis for Z[x1, x2, . . .].
Aim 2: Monk’s Rule—expansion of σw σsi

2. rc-graphs

Reference: N. Bergeron, S. Billey, RC graphs and Schubert Polynomials, Exp. Math
2 (1993) 257-269

Definition 3. Let a = a1a2 . . . ap ∈ R(w) and α = α1 . . . αp ∈ C(a ). The
reduced-word compatibel sequence graph or rc-graph for short is

D(a, α) = {(αk, ak − αk + 1) | 1 ≤ k ≤ p}.

Set
RC(w) = {D(a, α) | a ∈ R(w), α ∈ C(a)}.
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Example 4. a = 521345, α = 111235
The plus signs indicate positions in D(a , α ); note that if (i, j) ∈ D, then

i + j ≤ n if w ∈ Sn

Algorithm to get w ∈ Sn from graph:
Each line alternates between going up and going to the right unless it hits a plus

sign, in which case it goes through. Follow the strand labelled i from left to write
to obtain w(i).

In the example we have w = [3, 1, 4, 6, 5, 2] (because w(1) = 3,w(2) = 1, etc.);
`(w) = 6 since we have 6 crossings.

Note that strands do not cross more than once.

Remark 5. The transpose Dt of an rc-graph D ∈ RC(w) is an rc-graph in
RC(w−1).

Denote by ρ : RC(w) → RC(w−1) the bijection mapping D 7→ Dt.
Notation: For D ∈ RC(w) let xD =

∏
(i,j)∈D xi.

Corollary 6.

σw(x) = ΣD(a,α)∈RC(w)xD(a,α)

Date: February 11th, 2009.
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3. Moves on rc-graphs

Let w ∈ S∞ and D ∈ RC(w). A ladder move Lij is defined as:

A chute move Cij is defined as:

Remark 7. ρ(Lij(D)) = Cji(ρ(D)), i.e. Lij and Cij are dual to each other.

Lemma 8. Ladder and chute moves preserve the permutation associated to D:

permCij(D) = perm(D)

permLij(D) = perm(D)

Proof. We use a proof by picture. The strands in the region of a chute move look
like this:

Following each strand one can easily check that each letter still gets mapped to the
same position. �

Lemma 9. D ∈ RC(w) is the result of a chute move (or, equivalently, admits an
inverse chute move) if and only if there exists (i, j) 6∈ D such that (i + 1, j) ∈ D.

Remark 10. Geometrically, an inverse chute move cannot be applied if all +’s in
each column are clumped at the top.
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Proof. Suppose (i, j) 6∈ D and (i + 1, j) ∈ D. Look right along row i + 1 for the
smallest k > j such that (i + 1, k) 6∈ D (There must be such a k since D contains
only finitely many +).

Claim: (i, k) 6∈ D

Proof. Suppose this is not true, i.e. (i, k) ∈ D. Then we would have:

This is impossible because strands cannot cross twice. �

Let m be the position of the last dot before k, that is m < k largest such that
(i, m) 6∈ D. Therefore the + at (i+1,m) can be moved to (i, k) by an inverse chute
move. �
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