LECTURE 16: COMBINATORIAL FORMULA FOR SINGLE SCHUBERT POLYNOMIALS AND RC-GRAPHS

JOSHUA CLEMENT

1. Combinatorial formula for single Schubert polynomials

Theorem 1. Combinatorial Theorem:

$$
\sigma_{w}(x)=\sum_{\underline{a} \in R(w) \underline{b} \in C(\underline{a})} \sum_{b_{b_{1}}} \ldots x_{b_{\ell}}
$$

where $C(\underline{a})$ is the set of increasing \underline{a}-compatible words, ℓ is the length of w, and
(1) $b_{1} \leq b_{2} \leq \cdots \leq b_{\ell}$
(2) $b_{i} \leq a_{i}$
(3) $b_{i}<b_{i+1}$ if $a_{i}<a_{i+1}$

Proof. We have

$$
\left.\phi\left(\mathcal{C}_{\mathrm{sp}}\right)\right|_{y=0}=\prod_{i=1}^{n-1} \prod_{j=n-i}^{1} h_{i+j-1}\left(x_{i}\right)=\sigma(x)
$$

(Recall: $h_{i}(x)=1+x u_{i}$, where the u_{i} 's satisfy the nilCoxeter algebra) We need to expand the product and look for the coefficient of w; the b_{i} 's are indices of the x 's, and each h_{i+j-1} contributes u_{i+j-1}.

We get part (2) from the fact that $i \leq i+j-1$, and we get (3) because since the product $\prod_{j=n-i}^{1}$ is decreasing, we must have $b_{i}<b_{i+1}$ if $a_{i}<a_{i+1}$.

Example 2. Consider S_{3}. Then $\sigma(x)=h_{2}\left(x_{1}\right) h_{1}\left(x_{1}\right) h_{2}\left(x_{2}\right)=\left(1+x_{1} u_{2}\right)(1+$ $\left.x_{1} u_{1}\right)\left(1+x_{2} u_{2}\right)$. Note that $\left(1+x_{1} u_{2}\right)\left(1+x_{1} u_{1}\right)$ from the term $i=1$ in the inner product, which is decreasing, and $\left(1+x_{2} u_{2}\right)$ comes from $i=2$.

Aim 1: We want to prove that the Schubert polynomials $\sigma_{w}(x), w \in S_{\infty}$, form an integral basis for $Z\left[x_{1}, x_{2}, \ldots\right]$.
Aim 2: Monk's Rule expansion of $\sigma_{w} \sigma_{s_{i}}$

2. RC-GRAPHS

Reference: N. Bergeron, S. Billey, RC graphs and Schubert Polynomials, Exp. Math 2 (1993) 257-269

Definition 3. Let $\underline{a}=a_{1} a_{2} \ldots a_{p} \in R(w)$ and $\underline{\alpha}=\alpha_{1} \ldots \alpha_{p} \in C(\underline{a})$. The reduced-word compatibel sequence graph or rc-graph for short is

$$
D(\underline{a}, \underline{\alpha})=\left\{\left(\alpha_{k}, a_{k}-\alpha_{k}+1\right) \mid 1 \leq k \leq p\right\} .
$$

Set

$$
\mathcal{R C}(w)=\{D(\underline{a}, \underline{\alpha}) \mid \underline{a} \in R(w), \underline{\alpha} \in C(\underline{a})\} .
$$

Example 4. $\underline{a}=521345, \underline{\alpha}=111235$
The plus signs indicate positions in $D(\underline{a}, \underline{\alpha})$; note that if $(i, j) \in D$, then $i+j \leq n$ if $w \in S_{n}$

Algorithm to get $w \in S_{n}$ from graph:
Each line alternates between going up and going to the right unless it hits a plus sign, in which case it goes through. Follow the strand labelled i from left to write to obtain $w(i)$.

In the example we have $w=[3,1,4,6,5,2]$ (because $w(1)=3, w(2)=1$, etc.); $\ell(w)=6$ since we have 6 crossings.

Note that strands do not cross more than once.

Remark 5. The transpose D^{t} of an rc-graph $D \in \mathcal{R C}(w)$ is an rc-graph in $\mathcal{R C}\left(w^{-1}\right)$.

Denote by $\rho: \mathcal{R C}(w) \rightarrow \mathcal{R C}\left(w^{-1}\right)$ the bijection mapping $D \mapsto D^{t}$.
Notation: For $D \in \mathcal{R C}(w)$ let $x_{D}=\prod_{(i, j) \in D} x_{i}$.

Corollary 6.

$$
\sigma_{w}(x)=\Sigma_{D(\underline{a}, \underline{\alpha}) \in \mathcal{R C}(w)} x_{D(\underline{a}, \underline{\alpha})}
$$

[^0]
3. Moves on RC-GRAPHS

Let $w \in S_{\infty}$ and $D \in \mathcal{R C}(w)$. A ladder move $L_{i j}$ is defined as:

A chute move $C_{i j}$ is defined as:

Remark 7. $\rho\left(L_{i j}(D)\right)=C_{j i}(\rho(D))$, i.e. $L_{i j}$ and $C_{i j}$ are dual to each other.
Lemma 8. Ladder and chute moves preserve the permutation associated to D :

$$
\begin{aligned}
& \operatorname{perm} C_{i j}(D)=\operatorname{perm}(D) \\
& \operatorname{perm} L_{i j}(D)=\operatorname{perm}(D)
\end{aligned}
$$

Proof. We use a proof by picture. The strands in the region of a chute move look like this:

Following each strand one can easily check that each letter still gets mapped to the same position.

Lemma 9. $D \in \mathcal{R C}(w)$ is the result of a chute move (or, equivalently, admits an inverse chute move) if and only if there exists $(i, j) \notin D$ such that $(i+1, j) \in D$.

Remark 10. Geometrically, an inverse chute move cannot be applied if all +'s in each column are clumped at the top.

Proof. Suppose $(i, j) \notin D$ and $(i+1, j) \in D$. Look right along row $i+1$ for the smallest $k>j$ such that $(i+1, k) \notin D$ (There must be such a k since D contains only finitely many +).

Claim: $(i, k) \notin D$
Proof. Suppose this is not true, i.e. $(i, k) \in D$. Then we would have:

This is impossible because strands cannot cross twice.
Let m be the position of the last dot before k, that is $m<k$ largest such that $(i, m) \notin D$. Therefore the + at $(i+1, m)$ can be moved to (i, k) by an inverse chute move.

[^0]: Date: February 11th, 2009.

