
LECTURE 19: STANLEY SYMMETRIC FUNCTIONS AND THE
AFFINE SYMMETRIC GROUP

JEFF FERREIRA

1. Properties of Stanley Symmetric Functions

Note: This section is following the paper “Noncommutative Schur functions and
their applications” by Fomin and Greene (Discrete Math 193, 1998 pg 179-200).

Theorem 1.1. The Stanley symmetric function Fw(x) can be written as

Fw(x) =
∑

λ

〈sλt(u) · 1, w〉 sλ(x)

where
〈sλt · 1, w〉 = cw

λ = |{T ∈ SSY T (λt) | w(T ) · 1 = w}|.

This theorem needs some explaining: w(T ) is the column reading word of the
semi-standard Young tableau T read from bottom to top, left to right (in English
notation). This word gives the indices of the product of the u’s acting on the
identity permutation 1. As an example, let

T =

1 1 2 3
2 3 4
5
6

then w(T ) = 652131423, and we would have u6u5 . . . u2u3 · 1. Recall that the u’s
are the generators of the nil-Coxeter algebra.

We still need to describe sλt(u) · 1 appearing in the theorem. These are the so
called non-commutative Schur functions.

Definition 1.2. The non-commutative Schur functions are

sλ(u) = sλ(u1, . . . , un) =
∑

T∈SSY T (λ)

uT

where uT =
∏

i ui with the indices taken by the reading word of T (that is, w(T )).

Example 1.3. Let λ = (3, 2), and consider only 2 variables. The semi-standard

Young tableaux we get are 1 1 1
2 2

and 1 1 2
2 2

. Thus we have

sλ(u1, u2) = u2u1u2u1u1 + u2u1u2u1u2.

We next have the following theorem concerning non-commutative Schur func-
tions.
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Theorem 1.4 (Fomin, Greene). Suppose ui is a list of indeterminates satisfying

uiukuj = ukuiuj for i ≤ j < k, |i− k| ≥ 2
ujuiuk = ujukui for i < j ≤ k, |i− k| ≥ 2

(ui + ui+1)ui+1ui = ui+1ui(ui + ui+1).

Then the map sλ/µ 7→ sλ/µ(u) extends to a homomorphism from the algebra Λn of
symmetric polynomials in n commuting variables to Λn(u) generated by sλ/µ(u).

Remarks:
(1) The first two relations are called the non-local Knuth relations.
(2) All the relations above hold for the nil-Coxeter algebra.
(3) The significance of this theorem is that all properties of usual Schur func-

tions sλ/µ hold for sλ/µ(u). So we have sλ/µ(u) commute with each other,
sλ/µ(u) span Λn(u) as a Z-module, and sλ/µ(u) multiply according to
Littlewood-Richardson rule.

Outline of Proof. (1) First, prove that the corresponding elementary functions
in Λn(u) commute: ej(u)ek(u) = ek(u)ej(u) where ek(u) =

∑
a1>a2>···>ak

ua1 . . . uak
.

(2) Prove the Jacobi-Trudi identity in the non-commutative setting:

sλ/µ(u) = det(eλt
i−µt

j+j−i(u))n
i,j=1

using Gessel-Viennot paths.
�

We also have the non-commutative Cauchy identity

Theorem 1.5.
m∏

i=1

1∏
j=n

(1 + xiuj) =
∑

λ

sλ(x)sλt(u).

Now we are in shape to prove the first theorem of the section.

Proof of theorem 1.1.

Fw(x) = 〈
m∏

i=1

1∏
j=n

(1 + xiuj) · 1, w〉

= 〈
∑

λ

sλ(x)sλt(u) · 1, w〉

=
∑

λ

〈sλt(u) · 1, w〉 sλ(x).

�

2. Affine Symmetric Group

Definition 2.1. The affine symmetric group S̃n for n ≥ 2 is the group of bijections
w on Z such that

(1) w(i + n) = w(i) + n for all i ∈ Z
(2)

∑n
i=1 w(i) =

(
n+1

2

)
.
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The product in the group is function composition, and w ∈ S̃n is called an affine
permutation.

Remark: w ∈ S̃n is uniquely specified by its values on [n]. This leads to the
window notation w = [w(1), w(2), . . . , w(n)].

Example 2.2. If u = [2, 1,−2, 0, 14] and v = [15,−3,−2, 4, 1] in S̃5, then uv =
[24,−4,−7, 0, 2].

We can specify generators for S̃n. Let S̃A = S = {so, s1, . . . , sn−1} where

si = [1, 2, . . . , i− 1, i + 1, i, i + 2, . . . , n] for i = 1, 2, . . . , n− 1

and
s0 = [0, 2, . . . , n− 1, n + 1].

We can also consider what happens when si ∈ S acts on u ∈ S̃n on the right.
The claim is that usi interchanges the entries in positions i + kn and (i + 1) + kn
for all k ∈ Z in u. In window notation this looks like

usi =

{
[u(1), . . . , u(i− 1), u(i + 1), u(i), u(i + 2), . . . , u(n)] 1 ≤ i ≤ n− 1
[u(0), u(2), . . . , u(n− 1), u(n + 1)] i = 0

.
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