LECTURE 2: COXETER GROUPS

BRANDON CRAIN AND JOSH CLEMENT

Definition 1.

S is a set. A matrix $m:S\times S\to\{1,2,...,\infty\}$ is called a Coxeter matrix if $m(s,s\prime)=m(s\prime,s) ~~\forall s,s\prime\epsilon S$ $m(s,s\prime)=1 \Longleftrightarrow s=s\prime$

Definition 2.

The Coxeter Group W with generators in S is the free group generated by S modulo the relations: $(sst)^{m(s,sl)} = e$ (where e is the identity element) $\forall (s,sl) \epsilon S_{fin}^2$ where $S_{fin}^2 = \{(s,sl) \epsilon S^2 \mid m(s,sl) \neq \infty\}$ (W,S) is called a Coxeter system with generators: $s\epsilon S$ relations: $(ssl)^{m(s,sl)} = e \iff sslssl... = slssls... = m(s,sl)$

<u>Remark</u>: The Coxeter system (W, S) is uniquely determined by the Coxeter matrix m.

Example 1. Coxeter Group of type A_{n-1} :

relations:

$$\begin{split} s_i^2 &= e \text{ for } 1 \leq i \leq n-1 \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} \text{ for } 1 \leq i \leq n-2 \\ s_i s_j &= s_j s_i \text{ for } |i-j| > 1 \\ &\Longrightarrow \text{Symmetric Group } S_n \end{split}$$

Example 2. Coxeter Group of type B_n :

relations: $s_i^2 = e \text{ for } 0 \le i \le n-1$ $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \text{ for } 1 \le i \le n-2$ $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$ $s_i s_j = s_j s_i \text{ for } |i-j| > 1$

Date: January 7, 2009.

This is the group of signed permutations S_n^B S_n^B is a group of bijections $w : \{\pm 1, ..., \pm n\} \rightarrow \{\pm 1, ..., \pm n\}$ write $w = [a_1, ..., a_n]$ where $w(i) = a_i$ and w(-i) = -w(i) $s_0 = [-1, 2, ..., n]$ $s_i = [1, 2, ..., i - 1, i + 1, i, i + 2, ..., n]$ Check relations! Interpretation:

A deck of n cards where card j has j written on one side and -j written on the other side. Elements of S_n^B can be identified with all possible arrangements of stacks of cards with orientation.

Example 3. Coxeter Group of type D_n :

relations:

 $s_0' = s_0 s_1 s_0$ where s_0 is of type B_n $(s_0')^2 = e$ $s_0' s_1 = s_1 s_0'$ $s_0' s_2 s_0' = s_2 s_0' s_2$

[Note: $s_0^D = s_0^B s_1^B s_0^B and s_i^D = s_i^B$ for $i \ge 1$ where B and D represent the type of Coxeter Group.]

Interpretation:

 S_n^D corresponds to all arrangements of stacks of n cards with orientation with an even number of cards turned over.

Example 4. Coxeter Group of Affine type $\widetilde{A_{n-1}}$:

affine permutation group $\widetilde{S_n}$

Affine permutations are permutations p of \mathbb{Z} such that p(j+n) = p(j) + n for $\forall j \in \mathbb{Z}$ $\sum_{i=1}^{n} p(i) = \binom{n+1}{2}$

 $\sum_{i+1}^{n} p(i) = \binom{n+1}{2}$ generators: $\widetilde{s_i} = \prod_{j \in \mathbb{Z}} (i+jn, i+1+jn)$ for i = 1, ..., n

			N I		ŝ	
_	1 i i+1	п	n+1 •••	2n		

Example 5. Weyl Group of root systems:

 \longrightarrow of importance in the theory of semisimple lie algebras $\alpha \epsilon \mathbb{R}^d \setminus \{0\}$ reflections in the hyperplane orthogonal to α $\sigma_{\alpha}(\alpha) = -\alpha$

Definition 3.

A finite set $\phi \subset \mathbb{R}^d \setminus \{0\}$ is a crystallographic root system if it spans \mathbb{R}^d and $\forall \alpha, \beta \epsilon \phi$ (1) $\phi \cap \mathbb{R}_{\alpha} = \{\alpha, -\alpha\}$ (2) $\sigma_{\alpha}(\phi) = \phi$ (3) $\sigma_{\alpha}(\beta) = \beta + k\alpha$ for some $k \epsilon \mathbb{Z}$

 $W = < \sigma_{\alpha} \mid \alpha \epsilon \phi >$