LECTURE 2: COXETER GROUPS

BRANDON CRAIN AND JOSH CLEMENT

Definition 1.

S is a set.
A matrix $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$ is called a Coxeter matrix if $m(s, s \prime)=m(s \prime, s) \quad \forall s, s \prime \epsilon S$
$m(s, s \prime)=1 \Longleftrightarrow s=s \prime$

Definition 2.

The Coxeter Group W with generators in S is the free group generated by S modulo the relations:
$\left(s s^{\prime}\right)^{m(s, s \prime)}=e($ where e is the identity element)
$\forall\left(s, s^{\prime}\right) \epsilon S_{\text {fin }}^{2}$ where $S_{\text {fin }}^{2}=\left\{\left(s, s^{\prime}\right) \epsilon S^{2} \mid m\left(s, s^{\prime}\right) \neq \infty\right\}$
(W, S) is called a Coxeter system with
generators: $s \epsilon S$
relations: $(s s \prime)^{m(s, s \prime)}=e \Longleftrightarrow s s \prime s s^{\prime} \ldots=s \prime s s^{\prime} s \ldots=m(s, s \prime)$

Remark: The Coxeter system (W, S) is uniquely determined by the Coxeter matrix m.

Example 1. Coxeter Group of type A_{n-1} :

relations:
$s_{i}^{2}=e$ for $1 \leq i \leq n-1$
$s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for $1 \leq i \leq n-2$
$s_{i} s_{j}=s_{j} s_{i}$ for $|i-j|>1$
\Longrightarrow Symmetric Group S_{n}
Example 2. Coxeter Group of type B_{n} :
relations:
$s_{i}^{2}=e$ for $0 \leq i \leq n-1$
$s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for $1 \leq i \leq n-2$
$s_{0} s_{1} s_{0} s_{1}=s_{1} s_{0} s_{1} s_{0}$
$s_{i} s_{j}=s_{j} s_{i}$ for $|i-j|>1$

[^0]

This is the group of signed permutations S_{n}^{B}
S_{n}^{B} is a group of bijections $w:\{ \pm 1, \ldots, \pm n\} \rightarrow\{ \pm 1, \ldots, \pm n\}$
write $w=\left[a_{1}, \ldots, a_{n}\right]$ where $w(i)=a_{i}$ and $w(-i)=-w(i)$
$s_{0}=[-1,2, \ldots, n]$
$s_{i}=[1,2, \ldots, i-1, i+1, i, i+2, \ldots, n]$
Check relations!
Interpretation:
 other side. Elements of S_{n}^{B} can be identified with all possible arrangements of stacks of cards with orientation.

Example 3. Coxeter Group of type D_{n} :

relations:
$s_{0} I=s_{0} s_{1} s_{0}$ where s_{0} is of type B_{n}
$\left(s_{0}\right)^{2}=e$
$s_{0} / s_{1}=s_{1} s_{0} \prime$
$s_{0} / s_{2} s_{0} I=s_{2} s_{0} / s_{2}$
[Note: $s_{0}^{D}=s_{0}^{B} s_{1}^{B} s_{0}^{B}$ ands $s_{i}^{D}=s_{i}^{B}$ for $i \geq 1$ where B and D represent the type of Coxeter Group.]
Interpretation:
$\overline{S_{n}^{D} \text { corresponds to all arrangements of stacks of } n \text { cards with orientation with an }}$ even number of cards turned over.

Example 4. Coxeter Group of Affine type $\widetilde{A_{n-1}}$:

affine permutation group $\widetilde{S_{n}}$
Affine permutations are permutations p of \mathbb{Z} such that $p(j+n)=p(j)+n$ for $\forall j \epsilon \mathbb{Z}$
$\sum_{i+1}^{n} p(i)=\binom{n+1}{2}$
generators: $\widetilde{s_{i}}=\prod_{j \in \mathbb{Z}}(i+j n, i+1+j n)$ for $i=1, \ldots, n$

Example 5. Weyl Group of root systems:
\longrightarrow of importance in the theory of semisimple lie algebras $\alpha \in \mathbb{R}^{d} \backslash\{0\}$
reflections in the hyperplane orthogonal to α
$\sigma_{\alpha}(\alpha)=-\alpha$

Definition 3.

A finite set $\phi \subset \mathbb{R}^{d} \backslash\{0\}$ is a crystallographic root system if it spans \mathbb{R}^{d} and $\forall \alpha, \beta \epsilon \phi$
(1) $\phi \cap \mathbb{R}_{\alpha}=\{\alpha,-\alpha\}$
(2) $\sigma_{\alpha}(\phi)=\phi$
(3) $\sigma_{\alpha}(\beta)=\beta+k \alpha$ for some $k \in \mathbb{Z}$
$W=<\sigma_{\alpha} \mid \alpha \epsilon \phi>$

[^0]: Date: January 7, 2009.

