LECTURE 20: THE AFFINE SYMMETRIC GROUP

BRANDON BARRETTE

1. RECAP FROM LAST LECTURE

Recall: S, is the affine symmetric group. Elements w € S, are bijections from Z
to itself satisfying:

(1) wi+n)=w(l)+n VieZ

(2) iy w(i) = ("3")
Remark 1.1. For all w € S,, and 4,5 € Z, w(i) # w(j) mod n <= i # j mod n.
This will be useful later.

2. AFFINE INVERSION
Definition 2.1. The affine inversion number of v € S, is
inv(v) = {(i,§) € [)] X Z | i < j,0(i) > v(5)}.
Proposition 2.2. {(v) = inv(v) Vv € S,
Proof. Before we begin the proof of the proposition, we first give a claim:
CLamM: inv(v) < £(v).

Proof of claim.
It can be checked directly from the definition that for 1 <¢<n —1

AP iEv(v)—i—l if v(i) < v(i+1)
(*) (vs:) {inv(v) -1 ifo@@)>wv(i+1).

The same is also true for ¢ = 0 however, it is not obvious.

It is clear from the definition that (¢, 7) with 2 <4 <mn —1 is an inversion of v if
and only if (7,s0(j)) is an inversion of vsg. Hence it remains to consider the cases
i=1and i=n.

Assume v(n) < v(n+1). If j > n+ 1 and (n,j) is an inversion of v, then
(n,s0(j)) is an inversion of vsg. Also, (n,so(j)) is an inversion of vsg and (n,j) is
not an inversion of v <= v(n + 1) > v(j) > v(n). (1)

Similarly, if 7 > 1 and (1,7) is an inversion of vsg, then (1, s0(j)) is an inver-
sion of v. Also, (1,s0(j)) is an inversion of vsy and (1,75) is not and inversion of

vsg <= v(1) > v(so(j)) > v(0). (f)

Since v(i +n) = v(i) + n, the cardinality of (f) and (1) are equal.
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Note: (n,n + 1) is an inversion of vso but not of v, which means that inv(vsg) =
inv(v) + 1.

Now, assume v(n) > v(n + 1).

By similar arguments as above, inv(vsg) = inv(v) — 1. Therefore the recursion
formula (*) for inversion has been proven.

To finish the proof of the claim notice that inv(e) = 0 = £(e). By the recursion
formula we just proved, we have the inv(v) < ¢(v), thus proving the claim.

To prove the proposition, that i/rgl(v) = {(v) we use induction on inv.
If inv(v) = 0, then we must have
v(l) <v2)<---<v(n) <vin+1)=v(1)+n

which imples that v = e.
Next, suppose inv(v) = ¢ + 1 > 0 and assume by induction that inv(u) < t =
inv(u) = ¢(u). Since inv(v) > 0, we have v # e = s € § such that inv(vs) = t.
Then, by the induction hypothesis, we have that
inv(vs) = L(vs) =t = L(v) < t+1 = £(v) < inv(v).

Therefore we have shown that inv(v) = £(v). O

A consequence of the previous result is a simple description of the descent set of
affine permutations.

Proposition 2.3. Ifv € S, then Dr(v) = {s; € S | v(i) > v(i + 1)}
Proof. By the previous proposition, we have that
Dr(v) = {s; € S | inv(vs;) < inv(v)}.

The rest follows from (x), the recursion formula for inversion. g

Proposition 2.4. (S,,S) with S = {so,...,sn_1} is a Cozeter system.

Proof. This is very similar to the case of the symmetric group. [

Proposition 2.5. For 0 <i<n-—1, let J = S\{s;}. Then:

(1) (Sp)s = Stab(li + 1,n+1])

(2) (Sn) ={veS, |v(l) <v@2) < - <v(i)vi+1) < - <vn+1)}

Proof. (1) Obvious )
(2) Recall (S,)” = {v e S, | vs > v Vs € J} by definition. Then, by applying
the recursion formula for inversion (), we have our result.
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3. MINIMAL REPRESENTATIVES u”’ IN (S,)7,J = S\s;

Let u” be the minimal coset representative of (S,)” for J = S\s;. By Proposi-
tion 2.5, in complete notation u” is obtained from u by rearranging the entries
{u(i+1+kn),...,u(i +n+ kn)} in increasing order Vk € Z.

Example 3.1. Let n = 5.
For u = [-3,6,3,—5, 14], notice first that this satisfies the two conditions for
affine permutations stated in the beginning of these notes.

Define our set J = {sg, $1, 2, 54} (s3 removed), then we can write u as:

u=..| -363-514]2118019] ...

We choose —5 2 8 11 14 in increasing order. Then we can write:

U’J - [Sa 6, 97 753 2]

Where we obtain the first 3 entries in window notation by subtracting —5 of the
last 3 elements in —5 2 8 11 14.

Definition 3.2. The elements in (S,,)” for J = {s1,...,5,_1} are called the Grass-
mannian elements.

Remark 3.3. By a lemma we proved previously (in the section about parabolic
subgroups), u € S, is Grassmannian:

<= no reduced expression for u ends in letters in J

<= every reduced expression for u ends in sg

<= in window notation, [u(1),...,u(n)], all entries are increasing.

4. REFLECTIONS FOR S,

For a,b € Z, with a 2b mod n, then define

tap = H(a +rn,b+rn)
reZ
Note: s; =1t; ;41 for 0 <i < n.

Proposition 4.1. The set of reflection of S,, is:
{tijoin | 1 <i<j<nkel}
Proof. Let u € S,, 0 < i < mn, then we have that:
usju~t = H(u(z) +rn,u(i + 1) +rn)
rez

Since u is any element in S,,, u(i) and u(i + 1) can be any two elements of Z not
congruent mod n. ([l



