LECTURE 20: THE AFFINE SYMMETRIC GROUP

BRANDON BARRETTE

1. Recap from Last Lecture

Recall: \tilde{S}_n is the affine symmetric group. Elements $\omega \in \tilde{S}_n$ are bijections from \mathbb{Z} to itself satisfying:

 $\begin{array}{ll} (1) \ \ \omega(i+n) = \omega(i) + n & \forall i \in \mathbb{Z} \\ (2) \ \ \sum_{i=1}^{n} \omega(i) = \binom{n+1}{2} \end{array}$

Remark 1.1. For all $\omega \in \tilde{S}_n$ and $i, j \in \mathbb{Z}$, $\omega(i) \not\equiv \omega(j) \mod n \iff i \not\equiv j \mod n$. This will be useful later.

2. Affine Inversion

Definition 2.1. The affine inversion number of $v \in \tilde{S}_n$ is

$$\widetilde{\operatorname{inv}}(v) = |\{(i,j) \in [n] \times \mathbb{Z} \mid i < j, v(i) > v(j)\}|.$$

Proposition 2.2. $\ell(v) = \widetilde{inv}(v) \ \forall v \in \tilde{S}_n$

Proof. Before we begin the proof of the proposition, we first give a claim:

CLAIM: $\widetilde{\text{inv}}(v) \leq \ell(v)$. Proof of claim.

It can be checked directly from the definition that for $1 \leq i \leq n-1$

(*)
$$\widetilde{\operatorname{inv}}(vs_i) = \begin{cases} \widetilde{\operatorname{inv}}(v) + 1 & \text{if } v(i) < v(i+1) \\ \widetilde{\operatorname{inv}}(v) - 1 & \text{if } v(i) > v(i+1). \end{cases}$$

The same is also true for i = 0 however, it is not obvious.

It is clear from the definition that (i, j) with $2 \le i \le n-1$ is an inversion of v if and only if $(i, s_0(j))$ is an inversion of vs_0 . Hence it remains to consider the cases i = 1 and i = n.

Assume v(n) < v(n+1). If j > n+1 and (n,j) is an inversion of v, then $(n, s_0(j))$ is an inversion of vs_0 . Also, $(n, s_0(j))$ is an inversion of vs_0 and (n, j) is <u>not</u> an inversion of $v \iff v(n+1) \ge v(j) \ge v(n)$. (†)

Similarly, if j > 1 and (1, j) is an inversion of vs_0 , then $(1, s_0(j))$ is an inversion of v. Also, $(1, s_0(j))$ is an inversion of vs_0 and (1, j) is <u>not</u> and inversion of $vs_0 \iff v(1) \ge v(s_0(j)) \ge v(0)$. (‡)

Since v(i + n) = v(i) + n, the cardinality of (†) and (‡) are equal.

Date: February 23, 2009.

Note: (n, n + 1) is an inversion of vs_0 but not of v, which means that $\widetilde{inv}(vs_0) = \widetilde{inv}(v) + 1$.

Now, assume v(n) > v(n+1).

By similar arguments as above, $\widetilde{inv}(vs_0) = \widetilde{inv}(v) - 1$. Therefore the recursion formula (*) for inversion has been proven.

To finish the proof of the claim notice that $\widetilde{inv}(e) = 0 = \ell(e)$. By the recursion formula we just proved, we have the $\widetilde{inv}(v) \leq \ell(v)$, thus proving the claim.

To prove the proposition, that $\widetilde{inv}(v) = \ell(v)$ we use induction on \widetilde{inv} .

If $\widetilde{inv}(v) = 0$, then we must have

$$v(1) < v(2) < \dots < v(n) < v(n+1) = v(1) + n$$

which imples that v = e.

Next, suppose $\widetilde{\operatorname{inv}}(v) = t + 1 > 0$ and assume by induction that $\widetilde{\operatorname{inv}}(u) \le t \Longrightarrow \widetilde{\operatorname{inv}}(u) = \ell(u)$. Since $\widetilde{\operatorname{inv}}(v) > 0$, we have $v \ne e \Longrightarrow \exists s \in S$ such that $\widetilde{\operatorname{inv}}(vs) = t$.

Then, by the induction hypothesis, we have that

$$\widetilde{\mathrm{inv}}(vs) = \ell(vs) = t \Longrightarrow \ell(v) \le t + 1 \Longrightarrow \ell(v) \le \widetilde{\mathrm{inv}}(v).$$

Therefore we have shown that $\widetilde{\mathrm{inv}}(v) = \ell(v).$

A consequence of the previous result is a simple description of the descent set of affine permutations.

Proposition 2.3. If $v \in \tilde{S}_n$ then $D_R(v) = \{s_i \in S \mid v(i) > v(i+1)\}$

Proof. By the previous proposition, we have that

$$D_R(v) = \{ s_i \in S \mid \operatorname{inv}(vs_i) < \operatorname{inv}(v) \}.$$

The rest follows from (*), the recursion formula for inversion.

Proposition 2.4. (\tilde{S}_n, S) with $S = \{s_0, \ldots, s_{n-1}\}$ is a Coxeter system.

Proof. This is very similar to the case of the symmetric group.

Proposition 2.5. For $0 \le i \le n-1$, let $J = S \setminus \{s_i\}$. Then:

(1) $(\tilde{S}_n)_J = Stab([i+1, n+i])$

(2)
$$(\tilde{S}_n)^J = \{ v \in \tilde{S}_n \mid v(1) < v(2) < \dots < v(i), v(i+1) < \dots < v(n+1) \}$$

Proof. (1) Obvious

(2) Recall $(\tilde{S}_n)^J = \{v \in \tilde{S}_n \mid vs > v \; \forall s \in J\}$ by definition. Then, by applying the recursion formula for inversion (*), we have our result.

3. Minimal representatives u^J in $(\tilde{S}_n)^J, J = S \setminus s_i$

Let u^J be the minimal coset representative of $(\tilde{S}_n)^J$ for $J = S \setminus s_i$. By Proposition 2.5, in complete notation u^J is obtained from u by rearranging the entries $\{u(i+1+kn), \ldots, u(i+n+kn)\}$ in increasing order $\forall k \in \mathbb{Z}$.

Example 3.1. Let n = 5.

For u = [-3, 6, 3, -5, 14], notice first that this satisfies the two conditions for affine permutations stated in the beginning of these notes.

Define our set $J = \{s_0, s_1, s_2, s_4\}$ (s₃ removed), then we can write u as:

 $u = \dots \mid -3 \; 6 \; 3 - 5 \; 14 \mid 2 \; 11 \; 8 \; 0 \; 19 \mid \dots$

We choose $-5\ 2\ 8\ 11\ 14$ in increasing order. Then we can write:

$$u^J = [3, 6, 9, -5, 2]$$

Where we obtain the first 3 entries in window notation by subtracting -5 of the last 3 elements in -5 2 8 11 14.

Definition 3.2. The elements in $(\tilde{S}_n)^J$ for $J = \{s_1, \ldots, s_{n-1}\}$ are called the Grassmannian elements.

Remark 3.3. By a lemma we proved previously (in the section about parabolic subgroups), $u \in \tilde{S}_n$ is Grassmannian:

 \iff no reduced expression for u ends in letters in J

- \iff every reduced expression for u ends in s_0
- \iff in window notation, $[u(1), \ldots, u(n)]$, all entries are increasing.

4. Reflections for \tilde{S}_n

For $a, b \in \mathbb{Z}$, with $a \not\equiv b \mod n$, then define

$$t_{a,b} := \prod_{r \in \mathbb{Z}} (a + rn, b + rn)$$

Note: $s_i = t_{i,i+1}$ for $0 \le i < n$.

Proposition 4.1. The set of reflection of \tilde{S}_n is: $\{t_{i,j+kn} \mid 1 \le i < j \le n, k \in \mathbb{Z}\}.$

Proof. Let $u \in \tilde{S}_n$, $0 \le i < n$, then we have that:

$$us_i u^{-1} = \prod_{r \in \mathbb{Z}} (u(i) + rn, u(i+1) + rn)$$

Since u is any element in \tilde{S}_n , u(i) and u(i+1) can be any two elements of \mathbb{Z} not congruent mod n.