LECTURE 20: THE AFFINE SYMMETRIC GROUP

BRANDON BARRETTE

1. Recap from Last Lecture

Recall: \tilde{S}_{n} is the affine symmetric group. Elements $\omega \in \tilde{S}_{n}$ are bijections from \mathbb{Z} to itself satisfying:
(1) $\omega(i+n)=\omega(i)+n \quad \forall i \in \mathbb{Z}$
(2) $\sum_{i=1}^{n} \omega(i)=\binom{n+1}{2}$

Remark 1.1. For all $\omega \in \tilde{S_{n}}$ and $i, j \in \mathbb{Z}, \omega(i) \not \equiv \omega(j) \bmod n \Longleftrightarrow i \not \equiv j \bmod n$. This will be useful later.

2. Affine Inversion

Definition 2.1. The affine inversion number of $v \in \tilde{S}_{n}$ is

$$
\widetilde{\operatorname{inv}}(v)=|\{(i, j) \in[n] \times \mathbb{Z} \mid i<j, v(i)>v(j)\}| .
$$

Proposition 2.2. $\ell(v)=\widetilde{\operatorname{inv}}(v) \forall v \in \widetilde{S_{n}}$
Proof. Before we begin the proof of the proposition, we first give a claim:
Claim: $\widetilde{\operatorname{inv}}(v) \leq \ell(v)$.
Proof of claim.
It can be checked directly from the definition that for $1 \leq i \leq n-1$

$$
(*) \widetilde{\operatorname{inv}}\left(v s_{i}\right)= \begin{cases}\widetilde{\operatorname{inv}}(v)+1 & \text { if } v(i)<v(i+1) \\ \widetilde{\operatorname{inv}}(v)-1 & \text { if } v(i)>v(i+1)\end{cases}
$$

The same is also true for $i=0$ however, it is not obvious.
It is clear from the definition that (i, j) with $2 \leq i \leq n-1$ is an inversion of v if and only if $\left(i, s_{0}(j)\right)$ is an inversion of $v s_{0}$. Hence it remains to consider the cases $i=1$ and $i=n$.

Assume $v(n)<v(n+1)$. If $j>n+1$ and (n, j) is an inversion of v, then $\left(n, s_{0}(j)\right)$ is an inversion of $v s_{0}$. Also, $\left(n, s_{0}(j)\right)$ is an inversion of $v s_{0}$ and (n, j) is not an inversion of $v \Longleftrightarrow v(n+1) \geq v(j) \geq v(n)$. (\dagger)

Similarly, if $j>1$ and $(1, j)$ is an inversion of $v s_{0}$, then $\left(1, s_{0}(j)\right)$ is an inversion of v. Also, $\left(1, s_{0}(j)\right)$ is an inversion of $v s_{0}$ and $(1, j)$ is not and inversion of $v s_{0} \Longleftrightarrow v(1) \geq v\left(s_{0}(j)\right) \geq v(0) .(\ddagger)$

Since $v(i+n)=v(i)+n$, the cardinality of (\dagger) and (\ddagger) are equal.

[^0]Note: $(n, n+1)$ is an inversion of $v s_{0}$ but not of v, which means that $\widetilde{\operatorname{inv}}\left(v s_{0}\right)=$ $\widetilde{\operatorname{inv}}(v)+1$.
Now, assume $v(n)>v(n+1)$.
By similar arguments as above, $\widetilde{\operatorname{inv}}\left(v s_{0}\right)=\widetilde{\operatorname{inv}}(v)-1$. Therefore the recursion formula $\left({ }^{*}\right)$ for inversion has been proven.

To finish the proof of the claim notice that $\widetilde{\operatorname{inv}}(e)=0=\ell(e)$. By the recursion formula we just proved, we have the $\widetilde{\operatorname{inv}}(v) \leq \ell(v)$, thus proving the claim.

To prove the proposition, that $\widetilde{\operatorname{inv}}(v)=\ell(v)$ we use induction on $\widetilde{\text { inv}}$.
If $\widetilde{\operatorname{inv}}(v)=0$, then we must have

$$
v(1)<v(2)<\cdots<v(n)<v(n+1)=v(1)+n
$$

which imples that $v=e$.
Next, suppose $\widetilde{\operatorname{inv}}(v)=t+1>0$ and assume by induction that $\widetilde{\operatorname{inv}}(u) \leq t \Longrightarrow$ $\widetilde{\operatorname{inv}}(u)=\ell(u)$. Since $\widetilde{\operatorname{inv}}(v)>0$, we have $v \neq e \Longrightarrow \exists s \in S$ such that $\widetilde{\operatorname{inv}}(v s)=t$.

Then, by the induction hypothesis, we have that

$$
\widetilde{\operatorname{inv}}(v s)=\ell(v s)=t \Longrightarrow \ell(v) \leq t+1 \Longrightarrow \ell(v) \leq \widetilde{\operatorname{inv}}(v)
$$

Therefore we have shown that $\widetilde{\operatorname{inv}}(v)=\ell(v)$.

A consequence of the previous result is a simple description of the descent set of affine permutations.
Proposition 2.3. If $v \in \tilde{S_{n}}$ then $D_{R}(v)=\left\{s_{i} \in S \mid v(i)>v(i+1)\right\}$
Proof. By the previous proposition, we have that

$$
D_{R}(v)=\left\{s_{i} \in S \mid \widetilde{\operatorname{inv}}\left(v s_{i}\right)<\widetilde{\operatorname{inv}}(v)\right\}
$$

The rest follows from $(*)$, the recursion formula for inversion.

Proposition 2.4. ($\tilde{S_{n}}, S$) with $S=\left\{s_{0}, \ldots, s_{n-1}\right\}$ is a Coxeter system.
Proof. This is very similar to the case of the symmetric group.

Proposition 2.5. For $0 \leq i \leq n-1$, let $J=S \backslash\left\{s_{i}\right\}$. Then:
(1) $\left(\tilde{S}_{n}\right)_{J}=\operatorname{Stab}([i+1, n+i])$
(2) $\left(\tilde{S}_{n}\right)^{J}=\left\{v \in \tilde{S}_{n} \mid v(1)<v(2)<\cdots<v(i), v(i+1)<\cdots<v(n+1)\right\}$

Proof. (1) Obvious
(2) Recall $\left(\tilde{S}_{n}\right)^{J}=\left\{v \in \tilde{S}_{n} \mid v s>v \forall s \in J\right\}$ by definition. Then, by applying the recursion formula for inversion $(*)$, we have our result.
3. Minimal Representatives u^{J} In $\left(\tilde{S_{n}}\right)^{J}, J=S \backslash s_{i}$

Let u^{J} be the minimal coset representative of $\left(\tilde{S}_{n}\right)^{J}$ for $J=S \backslash s_{i}$. By Proposition 2.5, in complete notation u^{J} is obtained from u by rearranging the entries $\{u(i+1+k n), \ldots, u(i+n+k n)\}$ in increasing order $\forall k \in \mathbb{Z}$.
Example 3.1. Let $n=5$.
For $u=[-3,6,3,-5,14]$, notice first that this satisfies the two conditions for affine permutations stated in the beginning of these notes.

Define our set $J=\left\{s_{0}, s_{1}, s_{2}, s_{4}\right\}$ (s_{3} removed), then we can write u as:

$$
u=\ldots|-363-514| 2118019 \mid \ldots
$$

We choose -5281114 in increasing order. Then we can write:

$$
u^{J}=[3,6,9,-5,2]
$$

Where we obtain the first 3 entries in window notation by subtracting -5 of the last 3 elements in -5281114 .

Definition 3.2. The elements in $\left(\tilde{S_{n}}\right)^{J}$ for $J=\left\{s_{1}, \ldots, s_{n-1}\right\}$ are called the Grassmannian elements.

Remark 3.3. By a lemma we proved previously (in the section about parabolic subgroups), $u \in \tilde{S_{n}}$ is Grassmannian:
$\Longleftrightarrow \quad$ no reduced expression for u ends in letters in J
\Longleftrightarrow every reduced expression for u ends in s_{0}
\Longleftrightarrow in window notation, $[u(1), \ldots, u(n)]$, all entries are increasing.

$$
\text { 4. REFLECTIONS FOR } \tilde{S_{n}}
$$

For $a, b \in \mathbb{Z}$, with $a \not \equiv b \bmod n$, then define

$$
t_{a, b}:=\prod_{r \in \mathbb{Z}}(a+r n, b+r n)
$$

Note: $s_{i}=t_{i, i+1}$ for $0 \leq i<n$.

Proposition 4.1. The set of reflection of \tilde{S}_{n} is:

$$
\left\{t_{i, j+k n} \mid 1 \leq i<j \leq n, k \in \mathbb{Z}\right\}
$$

Proof. Let $u \in \tilde{S}_{n}, 0 \leq i<n$, then we have that:

$$
u s_{i} u^{-1}=\prod_{r \in \mathbb{Z}}(u(i)+r n, u(i+1)+r n)
$$

Since u is any element in $\tilde{S}_{n}, u(i)$ and $u(i+1)$ can be any two elements of \mathbb{Z} not congruent $\bmod n$.

[^0]: Date: February 23, 2009.

