
LECTURE 20: THE AFFINE SYMMETRIC GROUP

BRANDON BARRETTE

1. Recap from Last Lecture

Recall: S̃n is the affine symmetric group. Elements ω ∈ S̃n are bijections from Z
to itself satisfying:

(1) ω(i + n) = ω(i) + n ∀i ∈ Z
(2)

∑n
i=1 ω(i) =

(
n+1

2

)
Remark 1.1. For all ω ∈ S̃n and i, j ∈ Z, ω(i) 6≡ ω(j) mod n ⇐⇒ i 6≡ j mod n.
This will be useful later.

2. Affine Inversion

Definition 2.1. The affine inversion number of v ∈ S̃n is

ĩnv(v) = |{(i, j) ∈ [n]× Z | i < j, v(i) > v(j)}|.

Proposition 2.2. `(v) = ĩnv(v) ∀v ∈ S̃n

Proof. Before we begin the proof of the proposition, we first give a claim:

Claim: ĩnv(v) ≤ `(v).
Proof of claim.
It can be checked directly from the definition that for 1 ≤ i ≤ n− 1

(∗) ĩnv(vsi) =

{
ĩnv(v) + 1 if v(i) < v(i + 1)
ĩnv(v)− 1 if v(i) > v(i + 1).

The same is also true for i = 0 however, it is not obvious.
It is clear from the definition that (i, j) with 2 ≤ i ≤ n− 1 is an inversion of v if

and only if (i, s0(j)) is an inversion of vs0. Hence it remains to consider the cases
i = 1 and i = n.

Assume v(n) < v(n + 1). If j > n + 1 and (n, j) is an inversion of v, then
(n, s0(j)) is an inversion of vs0. Also, (n, s0(j)) is an inversion of vs0 and (n, j) is
not an inversion of v ⇐⇒ v(n + 1) ≥ v(j) ≥ v(n). (†)

Similarly, if j > 1 and (1, j) is an inversion of vs0, then (1, s0(j)) is an inver-
sion of v. Also, (1, s0(j)) is an inversion of vs0 and (1, j) is not and inversion of
vs0 ⇐⇒ v(1) ≥ v(s0(j)) ≥ v(0). (‡)

Since v(i + n) = v(i) + n, the cardinality of (†) and (‡) are equal.
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Note: (n, n + 1) is an inversion of vs0 but not of v, which means that ĩnv(vs0) =
ĩnv(v) + 1.
Now, assume v(n) > v(n + 1).
By similar arguments as above, ĩnv(vs0) = ĩnv(v) − 1. Therefore the recursion
formula (*) for inversion has been proven.

To finish the proof of the claim notice that ĩnv(e) = 0 = `(e). By the recursion
formula we just proved, we have the ĩnv(v) ≤ `(v), thus proving the claim.

To prove the proposition, that ĩnv(v) = `(v) we use induction on ĩnv.
If ĩnv(v) = 0, then we must have

v(1) < v(2) < · · · < v(n) < v(n + 1) = v(1) + n

which imples that v = e.

Next, suppose ĩnv(v) = t + 1 > 0 and assume by induction that ĩnv(u) ≤ t =⇒
ĩnv(u) = `(u). Since ĩnv(v) > 0, we have v 6= e =⇒ ∃s ∈ S such that ĩnv(vs) = t.

Then, by the induction hypothesis, we have that

ĩnv(vs) = `(vs) = t =⇒ `(v) ≤ t + 1 =⇒ `(v) ≤ ĩnv(v).

Therefore we have shown that ĩnv(v) = `(v). �

A consequence of the previous result is a simple description of the descent set of
affine permutations.

Proposition 2.3. If v ∈ S̃n then DR(v) = {si ∈ S | v(i) > v(i + 1)}

Proof. By the previous proposition, we have that

DR(v) = {si ∈ S | ĩnv(vsi) < ĩnv(v)}.
The rest follows from (∗), the recursion formula for inversion. �

Proposition 2.4. (S̃n, S) with S = {s0, . . . , sn−1} is a Coxeter system.

Proof. This is very similar to the case of the symmetric group. �

Proposition 2.5. For 0 ≤ i ≤ n− 1, let J = S\{si}. Then:
(1) (S̃n)J = Stab([i + 1, n + i])

(2) (S̃n)J = {v ∈ S̃n | v(1) < v(2) < · · · < v(i), v(i + 1) < · · · < v(n + 1)}

Proof. (1) Obvious
(2) Recall (S̃n)J = {v ∈ S̃n | vs > v ∀s ∈ J} by definition. Then, by applying

the recursion formula for inversion (∗), we have our result.
�
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3. Minimal representatives uJ in (S̃n)J , J = S\si

Let uJ be the minimal coset representative of (S̃n)J for J = S\si. By Proposi-
tion 2.5, in complete notation uJ is obtained from u by rearranging the entries
{u(i + 1 + kn), . . . , u(i + n + kn)} in increasing order ∀k ∈ Z.

Example 3.1. Let n = 5.
For u = [−3, 6, 3,−5, 14], notice first that this satisfies the two conditions for

affine permutations stated in the beginning of these notes.

Define our set J = {s0, s1, s2, s4} (s3 removed), then we can write u as:

u = . . . | − 3 6 3− 5 14 | 2 11 8 0 19 | . . .

We choose −5 2 8 11 14 in increasing order. Then we can write:

uJ = [3, 6, 9,−5, 2]

Where we obtain the first 3 entries in window notation by subtracting −5 of the
last 3 elements in −5 2 8 11 14.

Definition 3.2. The elements in (S̃n)J for J = {s1, . . . , sn−1} are called the Grass-
mannian elements.

Remark 3.3. By a lemma we proved previously (in the section about parabolic
subgroups), u ∈ S̃n is Grassmannian:

⇐⇒ no reduced expression for u ends in letters in J
⇐⇒ every reduced expression for u ends in s0

⇐⇒ in window notation, [u(1), . . . , u(n)], all entries are increasing.

4. Reflections for S̃n

For a, b ∈ Z, with a 6≡ b mod n, then define

ta,b :=
∏
r∈Z

(a + rn, b + rn)

Note: si = ti,i+1 for 0 ≤ i < n.

Proposition 4.1. The set of reflection of S̃n is:

{ti,j+kn | 1 ≤ i < j ≤ n, k ∈ Z}.

Proof. Let u ∈ S̃n, 0 ≤ i < n, then we have that:

usiu
−1 =

∏
r∈Z

(u(i) + rn, u(i + 1) + rn)

Since u is any element in S̃n, u(i) and u(i+1) can be any two elements of Z not
congruent mod n. �
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