MATH 280 WINTER 2009 LECTURE 3: PERMUTATION REPRESENTATION

JEFF FERREIRA

Note: These lecture notes follow Bjoerner and Brenti's book.
Let (W, S) be a Coxeter system.
Definition 1. S^{*} is the free monoid generated by S, that is, these are words in S with concatenation as product.

Define an equivalence relation \equiv on S^{*} by allowing the insertion or deletion of any word of the form $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}$ for all $s, s^{\prime} \in S_{\text {fin }}^{2}$. As groups, $S^{*} / \equiv \cong W$.

Definition 2. Let $T=\left\{w s w^{-1} \mid s \in S, w \in W\right\}$ called the set of reflections.
An easy check shows these really do look like reflection: $\left(w s w^{-1}\right)\left(w s w^{-1}\right)=e$. So this shows for any $t \in T, t^{2}=e$, and we also have $S \subset T$. Call $s \in S \subset T$ a simple reflection.

Fix a word $s_{1} s_{2} \ldots s_{k} \in S^{*}$. Define for all $1 \leq i \leq k$

$$
t_{i}=s_{1} s_{2} \ldots s_{i-1} s_{i} s_{i-1} \ldots s_{2} s_{1}
$$

Define $\hat{T}\left(s_{1} \ldots s_{k}\right)=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$.
Example 3. $\hat{T}(1232)=(1,121,12321,1232321)$.
Note that we can write

$$
t_{i}=\left(s_{1} \ldots s_{i-1}\right) s_{i}\left(s_{1} \ldots s_{i-1}\right)^{-1} \in T
$$

Observe that we have

$$
t_{i} s_{1} \ldots s_{k}=s_{1} \ldots \hat{s_{i}} \ldots s_{k}
$$

where the hat means that that term is omitted. We also have

$$
s_{1} s_{2} \ldots s_{i}=t_{i} t_{i-1} \ldots t_{1}
$$

Lemma 4. Let $w=s_{1} \ldots s_{k} \in W$ with k minimal. Then $t_{i} \neq t_{j}$ for all $i \neq j$.
Proof. By contradiction. Suppose $t_{i}=t_{j}$ for some $i<j$. We may write

$$
\begin{aligned}
w & =t_{i} t_{j} s_{1} \ldots s_{k} \\
& =s_{1} \ldots \hat{s_{i}} \ldots \hat{s_{j}} \ldots s_{k}
\end{aligned}
$$

which contradicts the minimality of k.
Definition 5. For $s_{1} \ldots s_{k} \in S^{*}, t \in T$, define $n\left(s_{1} \ldots s_{k} ; t\right)=$ the number of times t appears in $\hat{T}\left(s_{1} \ldots s_{k}\right)$. Also define for $s \in S, t \in T$

$$
\eta(s ; t)=\left\{\begin{array}{ll}
1 & \text { if } s=t \\
-1 & \text { if } s \neq t
\end{array} .\right.
$$

Lemma 6.

$$
(-1)^{n\left(s_{1} \ldots s_{k} ; t\right)}=\prod_{i=1}^{k} \eta\left(s_{i} ; s_{i-1} \ldots s_{1} t s_{1} \ldots s_{i-1}\right)
$$

Proof. Follows from the definitions since t appears in $\hat{T}\left(s_{1} \ldots s_{k}\right)$ if $s_{i-1} \ldots s_{1} t s_{1} \ldots s_{i-1}=$ s_{i}.

Definition 7. Let $S(R)=$ group of permutations of R where $R=T \times\{ \pm 1\}$.
Definition 8. Define $\pi_{s}: R \rightarrow R$ for $s \in S$ by $(t, \epsilon) \mapsto(s t s, \epsilon \eta(s ; t))$.
Lemma 9. $\pi_{s} \in S(R)$.
Proof. To obtain the result, we will show $\pi_{s}^{2}=e$.

$$
\begin{aligned}
\pi_{s}^{2}(t, \epsilon) & =\pi_{s}(s t s, \epsilon \eta(s ; t)) \\
& =(s s t s s, \epsilon \eta(s ; t) \eta(s, s t s)) \\
& =(t, \epsilon)
\end{aligned}
$$

Theorem 10. (i) $s \mapsto \pi_{s}$ extends uniquely to an injective homomorphism $w \mapsto \pi_{w}$ from W to $S(R)$.
(ii) $\pi_{t}(t, \epsilon)=(t,-\epsilon)$ for all $t \in T$.

Proof. (1) We know $\pi_{s}^{2}=i d_{R}$.
(2) Claim: $\left(\pi_{s} \pi_{s^{\prime}}\right)^{m}=i d_{R}$ for $s, s^{\prime} \in S$ and $m=m\left(s, s^{\prime}\right) \neq \infty$.

Proof of claim: Denote by \underline{s} the word

$$
\underline{\mathrm{s}}=s_{1} \ldots s_{2 m}=s^{\prime} s s^{\prime} s \ldots s^{\prime} s \quad 2 m \text { factors }
$$

and write

$$
t_{i}=s_{1} \ldots s_{i} \ldots s_{1}=\left(s^{\prime} s\right)^{i-1} s^{\prime} \quad \text { for } 1 \leq i \leq 2 m
$$

then we have the following implicatons:

$$
\begin{aligned}
\left(s^{\prime} s\right)^{m}=e & \Rightarrow t_{m+i}=t_{i} \quad \text { for } 1 \leq i \leq m \\
& \Rightarrow n(\underline{\mathrm{~s}} ; t)=\text { the number of times } t=t_{i}, 1 \leq i \leq 2 m \\
& \Rightarrow n(\underline{\mathrm{~s}} ; t)=\text { even for all } t \in T
\end{aligned}
$$

Let

$$
\left(t^{\prime}, \epsilon^{\prime}\right)=\left(\pi_{s} \pi_{s^{\prime}}\right)^{m}(t, \epsilon)=\pi_{s_{2 m}} \ldots \pi_{s_{1}}(t, \epsilon)
$$

then we have

$$
t^{\prime}=s_{2 m} \ldots s_{1} t s_{1} \ldots s_{2 m}=t
$$

and

$$
\begin{aligned}
\epsilon^{\prime} & =\epsilon \prod_{i=1}^{2 m} \eta\left(s_{i} ; s_{i-1} \ldots s_{1} t s_{1} \ldots s_{i-1}\right) \\
& =\epsilon(-1)^{n(\underline{\mathrm{~S}}, t)}=\epsilon
\end{aligned}
$$

which finishes the proof of the claim.
(3) Let $w=s_{k} \ldots s_{1}$. Then

$$
\begin{aligned}
\pi_{w} & =\pi_{s_{k}} \ldots \pi_{s_{1}}(t, \epsilon) \\
& =\left(s_{k} \ldots s_{1} t s_{1} \ldots s_{k}, \epsilon \prod_{i=1}^{k} \eta\left(s_{i} ; s_{i-1} \ldots s_{1} t s_{1} \ldots s_{i-1}\right)\right. \\
& =\left(w t w^{-1}, \epsilon(-1)^{n\left(s_{1} \ldots s_{k}, t\right)}\right)
\end{aligned}
$$

which implies $s \mapsto \pi_{s}$ extends to a homomorphism $w \mapsto \pi_{w}$ from W to $S(W)$.
Remark 11. Since $w \mapsto \pi_{w}$ is well defined, we can conclude that if $s_{1} \cdots s_{p}$ and $s_{1}^{\prime} \cdots s_{q}^{\prime}$ are two expressions of the same element $w \in W$, then $(-1)^{n\left(s_{1} \ldots s_{p}, t\right)}=(-1)^{n\left(s_{1}^{\prime} \ldots s_{q}^{\prime}, t\right)}$. Thus we can extend the definiton of $\eta: W \times T \rightarrow\{1,-1\}$ by $\eta(w, t)=(-1)^{n\left(s_{1} \ldots s_{k}, t\right)}$ where $s_{1} \ldots s_{k}$ is an arbitrary expression of w.
(4) Claim: $w \mapsto \pi_{w}$ is injective.

Proof of Claim: Suppose $w \neq e$. Choose a word $w=s_{k} \ldots s_{1}$ with k minimal. Recall that $\hat{T}\left(s_{1} \ldots s_{k}\right)=\left(t_{1}, \ldots, t_{k}\right)$ and by a previous lemma, $t_{i} \neq t_{j}$ when $i \neq j$. Since $n\left(s_{1} \ldots s_{k}, t_{i}\right)=1$ we have $\pi_{w}\left(t_{i}, \epsilon\right)=\left(w t_{i} w^{-1},-\epsilon\right)$. This shows that $\pi_{w} \neq i d$, so the map is injective.
This finishes the proof of (i).
For the proof of (ii), proceed by induction on $p: t=s_{1} \ldots s_{p} \ldots s_{1}$ for $s_{i} \in S$. For $p=1$ we see $\pi_{s}(s, \epsilon)=(s s s, \epsilon \eta(s, s))=(s,-\epsilon)$. Assume the result for $p-1$. Now consider the following, applying the induction hypothesis appropriately,

$$
\begin{aligned}
\pi_{t} & =\pi_{s_{1}} \ldots \pi_{s_{p}} \ldots \pi_{s_{1}}(t, \epsilon) \\
& =\pi_{s_{1}} \ldots \pi_{s_{p}} \ldots \pi_{s_{2}}\left(s_{1} t s_{1}, \epsilon \eta\left(s_{1}, t\right)\right) \\
& =\pi_{s_{1}} \ldots \pi_{s_{p}} \ldots \pi_{s_{2}}\left(s_{2} \ldots s_{p} \ldots s_{2},-\epsilon\right) \\
& =\pi_{s_{1}}\left(s_{2} \ldots s_{p} \ldots s_{2}, \epsilon\right) \\
& =(t,-\epsilon)
\end{aligned}
$$

which finishes the proof of (ii).

