
MATH 280 WINTER 2009
LECTURE 3: PERMUTATION REPRESENTATION

JEFF FERREIRA

Note: These lecture notes follow Bjoerner and Brenti’s book.
Let (W, S) be a Coxeter system.

Definition 1. S∗ is the free monoid generated by S, that is, these are words in S with
concatenation as product.

Define an equivalence relation ≡ on S∗ by allowing the insertion or deletion of any word
of the form (ss′)m(s,s′) for all s, s′ ∈ S2

fin. As groups, S∗/≡ ∼= W .

Definition 2. Let T = {wsw−1 | s ∈ S, w ∈ W} called the set of reflections.

An easy check shows these really do look like reflection: (wsw−1)(wsw−1) = e. So this
shows for any t ∈ T, t2 = e, and we also have S ⊂ T . Call s ∈ S ⊂ T a simple reflection.

Fix a word s1s2 . . . sk ∈ S∗. Define for all 1 ≤ i ≤ k

ti = s1s2 . . . si−1sisi−1 . . . s2s1.

Define T̂ (s1 . . . sk) = (t1, t2, . . . , tk).

Example 3. T̂ (1232) = (1, 121, 12321, 1232321).

Note that we can write

ti = (s1 . . . si−1)si(s1 . . . si−1)
−1 ∈ T.

Observe that we have
tis1 . . . sk = s1 . . . ŝi . . . sk

where the hat means that that term is omitted. We also have

s1s2 . . . si = titi−1 . . . t1.

Lemma 4. Let w = s1 . . . sk ∈ W with k minimal. Then ti 6= tj for all i 6= j.

Proof. By contradiction. Suppose ti = tj for some i < j. We may write

w = titjs1 . . . sk

= s1 . . . ŝi . . . ŝj . . . sk

which contradicts the minimality of k. �

Definition 5. For s1 . . . sk ∈ S∗, t ∈ T , define n(s1 . . . sk; t) =the number of times t appears

in T̂ (s1 . . . sk). Also define for s ∈ S, t ∈ T

η(s; t) =

{
1 if s = t

−1 if s 6= t
.
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Lemma 6.

(−1)n(s1...sk;t) =
k∏

i=1

η(si; si−1 . . . s1ts1 . . . si−1)

Proof. Follows from the definitions since t appears in T̂ (s1 . . . sk) if si−1 . . . s1ts1 . . . si−1 =
si. �

Definition 7. Let S(R) = group of permutations of R where R = T × {±1}.

Definition 8. Define πs : R → R for s ∈ S by (t, ε) 7→ (sts, εη(s; t)).

Lemma 9. πs ∈ S(R).

Proof. To obtain the result, we will show π2
s = e.

π2
s(t, ε) = πs(sts, εη(s; t))

= (sstss, εη(s; t)η(s, sts))

= (t, ε).

�

Theorem 10. (i) s 7→ πs extends uniquely to an injective homomorphism w 7→ πw from
W to S(R).

(ii) πt(t, ε) = (t,−ε) for all t ∈ T .

Proof. (1) We know π2
s = idR.

(2) Claim: (πsπs′)m = idR for s, s′ ∈ S and m = m(s, s′) 6= ∞.
Proof of claim: Denote by s

¯
the word

s
¯

= s1 . . . s2m = s′ss′s . . . s′s 2m factors

and write

ti = s1 . . . si . . . s1 = (s′s)i−1s′ for 1 ≤ i ≤ 2m

then we have the following implicatons:

(s′s)m = e ⇒ tm+i = ti for 1 ≤ i ≤ m

⇒ n(s
¯
; t) = the number of times t = ti, 1 ≤ i ≤ 2m

⇒ n(s
¯
; t) = even for all t ∈ T .

Let

(t′, ε′) = (πsπs′)m(t, ε) = πs2m . . . πs1(t, ε)

then we have

t′ = s2m . . . s1ts1 . . . s2m = t

and

ε′ = ε
2m∏
i=1

η(si; si−1 . . . s1ts1 . . . si−1)

= ε(−1)n(s
¯
,t) = ε

which finishes the proof of the claim.
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(3) Let w = sk . . . s1. Then

πw = πsk
. . . πs1(t, ε)

= (sk . . . s1ts1 . . . sk, ε
k∏

i=1

η(si; si−1 . . . s1ts1 . . . si−1)

= (wtw−1, ε(−1)n(s1...sk,t))

which implies s 7→ πs extends to a homomorphism w 7→ πw from W to S(W ).

Remark 11. Since w 7→ πw is well defined, we can conclude that if s1 · · · sp and s′1 · · · s′q
are two expressions of the same element w ∈ W , then (−1)n(s1...sp,t) = (−1)n(s′

1...s′
q ,t).

Thus we can extend the definiton of η : W × T → {1,−1} by η(w, t) = (−1)n(s1...sk,t)

where s1 . . . sk is an arbitrary expression of w.

(4) Claim: w 7→ πw is injective.
Proof of Claim: Suppose w 6= e. Choose a word w = sk . . . s1 with k minimal.

Recall that T̂ (s1 . . . sk) = (t1, . . . , tk) and by a previous lemma, ti 6= tj when i 6= j.
Since n(s1 . . . sk, ti) = 1 we have πw(ti, ε) = (wtiw

−1,−ε). This shows that πw 6= id,
so the map is injective.

This finishes the proof of (i).
For the proof of (ii), proceed by induction on p: t = s1 . . . sp . . . s1 for si ∈ S. For p = 1

we see πs(s, ε) = (sss, εη(s, s)) = (s,−ε). Assume the result for p − 1. Now consider the
following, applying the induction hypothesis appropriately,

πt = πs1 . . . πsp . . . πs1(t, ε)

= πs1 . . . πsp . . . πs2(s1ts1, εη(s1, t))

= πs1 . . . πsp . . . πs2(s2 . . . sp . . . s2,−ε)

= πs1(s2 . . . sp . . . s2, ε)

= (t,−ε)

which finishes the proof of (ii). �


