
LECTURE 4: STRONG EXCHANGE PROPERTY

BRANDON CRAIN, STEVEN PON

1. Reduced Words and Length

Let (W,S) be a Coxeter system. Recall the definition of length of an element
ω ∈ W :

Definition 1.1. The length `(ω) of ω ∈ W is the minimal k ∈ Z≥0 such that
ω = s1s2 · · · sk is an expression of ω in terms of the generators si ∈ S. Any word
s1 · · · s`(ω) such that ω = s1 · · · s`(ω) is called a reduced word.

Lemma 1.2. The map ε : s → −1 ∀s ∈ S extends to a group homomorphism
ε : W → {±1}.

Proof. Just need to check that any two words for an element ω ∈ W differ by an
even number of generators. This follows from the Coxeter relations. �

Proposition 1.3. For all ω, ω′ ∈ W , and s ∈ S:
(1) ε(ω) = (−1)`(w)

(2) `(ω′ω) ∼= `(ω′) + `(ω) mod 2
(3) `(sω) = `(ω)± 1
(4) `(ω) = `(ω−1)
(5) |`(ω′)− `(ω)| ≤ `(ω′ω) ≤ `(ω′) + `(ω).

Proof. (1) - (3) follow from above lemma. For (4), suppose `(ω−1) < `(ω), and say
ω−1 = s1 · · · sk. Then we can write ω = sk · · · s1, but we assumed all minimal words
for ω had more than k generators so we get a contradiction. Interchange ω and
ω−1 and (4) follows. The second inequality of (5) is clear – we can just concatenate
a reduced word for ω′ with a reduced word for ω to get a word for ω′ω. The first
inequality follows from the Coxeter relations for W . The only way to reduce the
length of a word is through the relation s2 = 1. Given reduced words for ω′ and
ω, one can check that the maximum number of generators that can be canceled in
ω′ω is min(`(ω), `(ω′)). �

Remark 1.4. A := {ω ∈ W | `(ω) ≡ 0 mod 2} is a subgroup of W called the
alternating subgroup (also called the rotation subgroup).

2. Strong Exchange Property

Theorem 2.1 (Strong Exchange Property). Let (W,S) be a Coxeter system, let
T = {ωsω−1 | ω ∈ W} be the set of reflections of W and let ω = s1 · · · sk ∈ W ,
si ∈ S, t ∈ T . If `(tω) < `(ω), then tω = s1 · · · ŝi · · · sk for some 1 ≤ i ≤ k.

Before proving the theorem, we recall several definitions from a previous lecture:
• T̂ (s1 · · · sk) = (t1, t2, . . . , tk), where ti = s1s2 · · · si−1sisi−1 · · · s2s1.
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• n(s1 · · · sk; t) = the number of times t appears in T̂ (s1 · · · sk).

• η(s; t) =

{
1 if s = t

−1 if s 6= t.

• R := T × {±1}
• πs : R → R, πs(t, ε) := (sts, εη(s; t)). The map s → πs can be extended

uniquely to an injective homomorphism ω → πω from W to S(R), the group
of permutations of R.

Note that we can extend the definition of η(s; t) to all of W by η(ω; t) :=
(−1)n(s1s2···sk;t), where s1s2 · · · sk is an arbitrary expression for ω. The parity of
n(s1s2 · · · sk; t) depends only on ω and t (see proof that s → πs extends uniquely
to ω → πω from last lecture) and so η(ω; t) is well-defined.

Proof of Theorem 2.1.
Claim: `(tw) < `(w) ⇐⇒ η(w, t) = −1

Proof. (of Claim)

” ⇐= ” assume η(w, t) = −1 (∗)
w = s1′...sd′ is a reduced expression for w
n(s1′...sd′; t) is odd by (∗)
=⇒ t = s1′...si′...s1′ for some 1 ≤ i ≤ d
=⇒ `(tw) = `(s1′...ŝi′...sd′) < d = `(w)
” =⇒ ” Asssume η(w, t) = 1

Π(tw)−1(t, ε) = Πw−1Πt(t, ε)
= Πw−1(t,−ε)
= (w−1tw,−εη(w, t))
= (w−1tw,−ε)

where from lines 2 to 3 we are using the Theorem from the last lecture.
=⇒ η(tw; t) = −1 (Reading off definition)
=⇒ by ” ⇐= ” direction `(w) = `(ttw) < `(tw)
Now `(tw) < `(w) =⇒ η(w, t) = −1
=⇒ n(s1...sk; t) is odd
=⇒ t = s1...si...s1 for some 1 ≤ i ≤ k
=⇒ tw = s1...ŝi...sk �

Corollary 2.2. (∗)

w = s1...sk a reduced word, tεT
T.F.A.E.:
(1) `(tw) < `(w)
(2) tw = s1...ŝi...sk for some 1 ≤ i ≤ k
(3) t = s1s2...si...s2s1

Furthermore i in (2) and (3) are uniquely determined.

Proof.

(1) =⇒ (2) by Strong Exchange Property
(2) =⇒ (1) is obvious
(3) =⇒ (2) easy calculation
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(2) tw = s1...ŝi...sk

=⇒ ts1...si = s1...si−1

=⇒ t = s1...si...s1

Uniqueness of i follows from the lemma last lecture which said that if w = s1...sk

is reduced, then all ti are distinct.

Definition 2.3.

TL(w) := {tεT |`(tw) < `(w)}
TR(w) := {tεT |`(wt) < `(w)}, note TR(w) = TL(w−1)
DL(w) = TL(w) ∩ S are the left descents
DR(w) = TR(w) ∩ S are the right descents

Corollary 2.4. |TL(w)| = `(w)

Proof.

Let w = s1...sk with k = `(w). Then by Corollary ∗,
TL(w) = {s1...si...s1|1 ≤ i ≤ k}
Since s1...sk is reduced, all ti = s1...si...s1 are distinct.

Corollary 2.5. ∀sεS and wεW

(1) sεDL(w) ⇐⇒ some reduced expression for w begins with s
(2) sεDR(w) ⇐⇒ some reduced expression for w ends with s

Proof.

” ⇐= ” clear
” =⇒ ” By Corollary ∗, `(tw) < `(w) ⇐⇒ tw = s1...ŝi...sk

If s = t, then w = stw = ss1...ŝi...sk
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