LECTURE 4: STRONG EXCHANGE PROPERTY

BRANDON CRAIN, STEVEN PON

1. Reduced Words and Length

Let (W, S) be a Coxeter system. Recall the definition of length of an element $\omega \in W$:
Definition 1.1. The length $\ell(\omega)$ of $\omega \in W$ is the minimal $k \in \mathbb{Z}_{>0}$ such that $\omega=s_{1} s_{2} \cdots s_{k}$ is an expression of ω in terms of the generators $s_{i} \in \bar{S}$. Any word $s_{1} \cdots s_{\ell(\omega)}$ such that $\omega=s_{1} \cdots s_{\ell(\omega)}$ is called a reduced word.
Lemma 1.2. The map $\epsilon: s \rightarrow-1 \forall s \in S$ extends to a group homomorphism $\epsilon: W \rightarrow\{ \pm 1\}$.
Proof. Just need to check that any two words for an element $\omega \in W$ differ by an even number of generators. This follows from the Coxeter relations.
Proposition 1.3. For all $\omega, \omega^{\prime} \in W$, and $s \in S$:
(1) $\epsilon(\omega)=(-1)^{\ell(w)}$
(2) $\ell\left(\omega^{\prime} \omega\right) \cong \ell\left(\omega^{\prime}\right)+\ell(\omega) \bmod 2$
(3) $\ell(s \omega)=\ell(\omega) \pm 1$
(4) $\ell(\omega)=\ell\left(\omega^{-1}\right)$
(5) $\left|\ell\left(\omega^{\prime}\right)-\ell(\omega)\right| \leq \ell\left(\omega^{\prime} \omega\right) \leq \ell\left(\omega^{\prime}\right)+\ell(\omega)$.

Proof. (1) - (3) follow from above lemma. For (4), suppose $\ell\left(\omega^{-1}\right)<\ell(\omega)$, and say $\omega^{-1}=s_{1} \cdots s_{k}$. Then we can write $\omega=s_{k} \cdots s_{1}$, but we assumed all minimal words for ω had more than k generators so we get a contradiction. Interchange ω and ω^{-1} and (4) follows. The second inequality of (5) is clear - we can just concatenate a reduced word for ω^{\prime} with a reduced word for ω to get a word for $\omega^{\prime} \omega$. The first inequality follows from the Coxeter relations for W. The only way to reduce the length of a word is through the relation $s^{2}=1$. Given reduced words for ω^{\prime} and ω, one can check that the maximum number of generators that can be canceled in $\omega^{\prime} \omega$ is $\min \left(\ell(\omega), \ell\left(\omega^{\prime}\right)\right)$.

Remark 1.4. $A:=\{\omega \in W \mid \ell(\omega) \equiv 0 \bmod 2\}$ is a subgroup of W called the alternating subgroup (also called the rotation subgroup).

2. Strong Exchange Property

Theorem 2.1 (Strong Exchange Property). Let (W, S) be a Coxeter system, let $T=\left\{\omega s \omega^{-1} \mid \omega \in W\right\}$ be the set of reflections of W and let $\omega=s_{1} \cdots s_{k} \in W$, $s_{i} \in S, t \in T$. If $\ell(t \omega)<\ell(\omega)$, then $t \omega=s_{1} \cdots \hat{s}_{i} \cdots s_{k}$ for some $1 \leq i \leq k$.

Before proving the theorem, we recall several definitions from a previous lecture:

- $\hat{T}\left(s_{1} \cdots s_{k}\right)=\left(t_{1}, t_{2}, \ldots, t_{k}\right)$, where $t_{i}=s_{1} s_{2} \cdots s_{i-1} s_{i} s_{i-1} \cdots s_{2} s_{1}$.

[^0]- $n\left(s_{1} \cdots s_{k} ; t\right)=$ the number of times t appears in $\hat{T}\left(s_{1} \cdots s_{k}\right)$.
- $\eta(s ; t)= \begin{cases}1 & \text { if } s=t \\ -1 & \text { if } s \neq t\end{cases}$
- $R:=T \times\{ \pm 1\}$
- $\pi_{s}: R \rightarrow R, \pi_{s}(t, \epsilon):=(s t s, \epsilon \eta(s ; t))$. The map $s \rightarrow \pi_{s}$ can be extended uniquely to an injective homomorphism $\omega \rightarrow \pi_{\omega}$ from W to $S(R)$, the group of permutations of R.
Note that we can extend the definition of $\eta(s ; t)$ to all of W by $\eta(\omega ; t):=$ $(-1)^{n\left(s_{1} s_{2} \cdots s_{k} ; t\right)}$, where $s_{1} s_{2} \cdots s_{k}$ is an arbitrary expression for ω. The parity of $n\left(s_{1} s_{2} \cdots s_{k} ; t\right)$ depends only on ω and t (see proof that $s \rightarrow \pi_{s}$ extends uniquely to $\omega \rightarrow \pi_{\omega}$ from last lecture) and so $\eta(\omega ; t)$ is well-defined.
Proof of Theorem 2.1.
Claim: $\ell(t w)<\ell(w) \Longleftrightarrow \eta(w, t)=-1$
Proof. (of Claim)
$" \Longleftarrow "$ assume $\eta(w, t)=-1(*)$
$w=s_{1} / \ldots s_{d}$ is a reduced expression for w
$n\left(s_{1} / \ldots s_{d} ; t\right)$ is odd by $(*)$
$\Longrightarrow t=s_{1} / \ldots s_{i} / \ldots s_{1} /$ for some $1 \leq i \leq d$
$\Longrightarrow \ell(t w)=\ell\left(s_{1} \prime \ldots \widehat{s_{i} \prime} \ldots s_{d} \prime\right)<d=\ell(w)$
$" \Longrightarrow "$ Asssume $\eta(w, t)=1$

$$
\begin{aligned}
\Pi_{(t w)^{-1}}(t, \varepsilon) & =\Pi_{w^{-1}} \Pi_{t}(t, \varepsilon) \\
& =\Pi_{w^{-1}}(t,-\varepsilon) \\
& =\left(w^{-1} t w,-\varepsilon \eta(w, t)\right) \\
& =\left(w^{-1} t w,-\varepsilon\right)
\end{aligned}
$$

where from lines 2 to 3 we are using the Theorem from the last lecture.
$\Longrightarrow \eta(t w ; t)=-1$ (Reading off definition)
\Longrightarrow by " $\Longleftarrow "$ direction $\ell(w)=\ell(t t w)<\ell(t w)$
Now $\ell(t w)<\ell(w) \Longrightarrow \eta(w, t)=-1$
$\Longrightarrow n\left(s_{1} \ldots s_{k} ; t\right)$ is odd
$\Longrightarrow t=s_{1} \ldots s_{i} \ldots s_{1}$ for some $1 \leq i \leq k$
$\Longrightarrow t w=s_{1} \ldots \widehat{s_{i}} \ldots s_{k}$
Corollary 2.2. (*)
$w=s_{1} \ldots s_{k}$ a reduced word, $t \epsilon T$
T.F.A.E.:
(1) $\ell(t w)<\ell(w)$
(2) $t w=s_{1} \ldots \widehat{s_{i}} \ldots s_{k}$ for some $1 \leq i \leq k$
(3) $t=s_{1} s_{2} \ldots s_{i} \ldots s_{2} s_{1}$

Furthermore i in (2) and (3) are uniquely determined.

Proof.

$(1) \Longrightarrow(2)$ by Strong Exchange Property
$(2) \Longrightarrow(1)$ is obvious
$(3) \Longrightarrow(2)$ easy calculation
(2) $t w=s_{1} \ldots \widehat{s_{i}} \ldots s_{k}$
$\Longrightarrow t s_{1} \ldots s_{i}=s_{1} \ldots s_{i-1}$
$\Longrightarrow t=s_{1} \ldots s_{i} \ldots s_{1}$
Uniqueness of i follows from the lemma last lecture which said that if $w=s_{1} \ldots s_{k}$ is reduced, then all t_{i} are distinct.

Definition 2.3.

$T_{L}(w):=\{t \epsilon T \mid \ell(t w)<\ell(w)\}$
$T_{R}(w):=\{t \epsilon T \mid \ell(w t)<\ell(w)\}$, note $T_{R}(w)=T_{L}\left(w^{-1}\right)$
$D_{L}(w)=T_{L}(w) \cap S$ are the left descents
$D_{R}(w)=T_{R}(w) \cap S$ are the right descents
Corollary 2.4. $\left|T_{L}(w)\right|=\ell(w)$
Proof.
Let $w=s_{1} \ldots s_{k}$ with $k=\ell(w)$. Then by Corollary $*$,
$T_{L}(w)=\left\{s_{1} \ldots s_{i} \ldots s_{1} \mid 1 \leq i \leq k\right\}$
Since $s_{1} \ldots s_{k}$ is reduced, all $t_{i}=s_{1} \ldots s_{i} \ldots s_{1}$ are distinct.
Corollary 2.5. $\forall s \epsilon S$ and $w \epsilon W$
(1) $s \in D_{L}(w) \Longleftrightarrow$ some reduced expression for w begins with s
(2) $s \in D_{R}(w) \Longleftrightarrow$ some reduced expression for w ends with s

Proof.

$" \Longleftarrow "$ clear
$" \Longrightarrow "$ By Corollary $*, \ell(t w)<\ell(w) \Longleftrightarrow t w=s_{1} \ldots \widehat{s_{i}} \ldots s_{k}$
If $s=t$, then $w=s t w=s s_{1} \ldots \widehat{s_{i}} \ldots s_{k}$

[^0]: Date: January 12, 2009.

