LECTURE 4: STRONG EXCHANGE PROPERTY

BRANDON CRAIN, STEVEN PON

1. Reduced Words and Length

Let (W, S) be a Coxeter system. Recall the definition of *length* of an element $\omega \in W$:

Definition 1.1. The length $\ell(\omega)$ of $\omega \in W$ is the minimal $k \in \mathbb{Z}_{\geq 0}$ such that $\omega = s_1 s_2 \cdots s_k$ is an expression of ω in terms of the generators $s_i \in S$. Any word $s_1 \cdots s_{\ell(\omega)}$ such that $\omega = s_1 \cdots s_{\ell(\omega)}$ is called a reduced word.

Lemma 1.2. The map $\epsilon : s \to -1 \ \forall s \in S$ extends to a group homomorphism $\epsilon : W \to \{\pm 1\}.$

Proof. Just need to check that any two words for an element $\omega \in W$ differ by an even number of generators. This follows from the Coxeter relations.

Proposition 1.3. For all $\omega, \omega' \in W$, and $s \in S$:

- (1) $\epsilon(\omega) = (-1)^{\ell(w)}$ (2) $\ell(\omega'\omega) \cong \ell(\omega') + \ell(\omega) \mod 2$ (3) $\ell(s\omega) = \ell(\omega) \pm 1$
- (4) $\ell(\omega) = \ell(\omega^{-1})$

(5)
$$|\ell(\omega') - \ell(\omega)| \le \ell(\omega'\omega) \le \ell(\omega') + \ell(\omega).$$

Proof. (1) - (3) follow from above lemma. For (4), suppose $\ell(\omega^{-1}) < \ell(\omega)$, and say $\omega^{-1} = s_1 \cdots s_k$. Then we can write $\omega = s_k \cdots s_1$, but we assumed all minimal words for ω had more than k generators so we get a contradiction. Interchange ω and ω^{-1} and (4) follows. The second inequality of (5) is clear – we can just concatenate a reduced word for ω' with a reduced word for ω to get a word for $\omega'\omega$. The first inequality follows from the Coxeter relations for W. The only way to reduce the length of a word is through the relation $s^2 = 1$. Given reduced words for ω' and ω , one can check that the maximum number of generators that can be canceled in $\omega'\omega$ is $\min(\ell(\omega), \ell(\omega'))$.

Remark 1.4. $A := \{\omega \in W \mid \ell(\omega) \equiv 0 \mod 2\}$ is a subgroup of W called the alternating subgroup (also called the rotation subgroup).

2. Strong Exchange Property

Theorem 2.1 (Strong Exchange Property). Let (W, S) be a Coxeter system, let $T = \{\omega s \omega^{-1} \mid \omega \in W\}$ be the set of reflections of W and let $\omega = s_1 \cdots s_k \in W$, $s_i \in S, t \in T$. If $\ell(t\omega) < \ell(\omega)$, then $t\omega = s_1 \cdots \hat{s}_i \cdots s_k$ for some $1 \le i \le k$.

Before proving the theorem, we recall several definitions from a previous lecture:

• $\hat{T}(s_1 \cdots s_k) = (t_1, t_2, \dots, t_k)$, where $t_i = s_1 s_2 \cdots s_{i-1} s_i s_{i-1} \cdots s_2 s_1$.

Date: January 12, 2009.

- $n(s_1 \cdots s_k; t)$ = the number of times t appears in $\hat{T}(s_1 \cdots s_k)$.
- $\eta(s;t) = \begin{cases} 1 & \text{if } s = t \\ -1 & \text{if } s \neq t. \end{cases}$
- $R := T \times \{\pm 1\}$
- $\pi_s : R \to R, \ \pi_s(t, \epsilon) := (sts, \epsilon\eta(s; t))$. The map $s \to \pi_s$ can be extended uniquely to an injective homomorphism $\omega \to \pi_\omega$ from W to S(R), the group of permutations of R.

Note that we can extend the definition of $\eta(s;t)$ to all of W by $\eta(\omega;t) := (-1)^{n(s_1s_2\cdots s_k;t)}$, where $s_1s_2\cdots s_k$ is an arbitrary expression for ω . The parity of $n(s_1s_2\cdots s_k;t)$ depends only on ω and t (see proof that $s \to \pi_s$ extends uniquely to $\omega \to \pi_\omega$ from last lecture) and so $\eta(\omega;t)$ is well-defined.

Proof of Theorem 2.1. Claim: $\ell(tw) < \ell(w) \iff \eta(w, t) = -1$

" \Leftarrow " assume $\eta(w,t) = -1$ (*) $w = s_1 \cdot ... s_d \cdot i$ is a reduced expression for w $n(s_1 \cdot ... s_d \cdot ; t)$ is odd by (*) $\Longrightarrow t = s_1 \cdot ... s_i \cdot ... s_1 \cdot f$ for some $1 \le i \le d$ $\Longrightarrow \ell(tw) = \ell(s_1 \cdot ... s_i \cdot ... s_d \cdot) < d = \ell(w)$ " \Longrightarrow " Assume $\eta(w,t) = 1$ $\Pi_{(tw)^{-1}}(t,\varepsilon) = \Pi_{w^{-1}} \Pi_t(t,\varepsilon)$

$$\begin{aligned} & \underset{tw}{}^{*w} = \Pi_{w} = \Pi_{t}(t, \varepsilon) \\ & = \Pi_{w^{-1}}(t, -\varepsilon) \\ & = (w^{-1}tw, -\varepsilon\eta(w, t)) \\ & = (w^{-1}tw, -\varepsilon) \end{aligned}$$

where from lines 2 to 3 we are using the Theorem from the last lecture. $\Rightarrow \eta(tw;t) = -1 \text{ (Reading off definition)}$ $\Rightarrow by " \Leftarrow " \text{ direction } \ell(w) = \ell(ttw) < \ell(tw)$ Now $\ell(tw) < \ell(w) \Rightarrow \eta(w,t) = -1$ $\Rightarrow n(s_1...s_k;t) \text{ is odd}$ $\Rightarrow t = s_1...s_i...s_1 \text{ for some } 1 \le i \le k$ $\Rightarrow tw = s_1...\widehat{s_i}...s_k$

Corollary 2.2. (*)

$$\begin{split} &w=s_1...s_k \text{ a reduced word, } t\epsilon T\\ \text{T.F.A.E.:}\\ &(1)\;\ell(tw)<\ell(w)\\ &(2)\;tw=s_1...\widehat{s_i}...s_k \text{ for some } 1\leq i\leq k\\ &(3)\;t=s_1s_2...s_i...s_2s_1\\ \text{Furthermore }i\text{ in }(2)\text{ and }(3)\text{ are uniquely determined.} \end{split}$$

Proof.

(1) \implies (2) by Strong Exchange Property (2) \implies (1) is obvious (3) \implies (2) easy calculation (2) $tw = s_1...\hat{s_i}...s_k$ $\implies ts_1...s_i = s_1...s_{i-1}$ $\implies t = s_1...s_i...s_1$ Uniqueness of *i* follows fi

Uniqueness of *i* follows from the lemma last lecture which said that if $w = s_1...s_k$ is reduced, then all t_i are distinct.

Definition 2.3.

$$\begin{split} T_L(w) &:= \{t \epsilon T | \ell(tw) < \ell(w)\}\\ T_R(w) &:= \{t \epsilon T | \ell(wt) < \ell(w)\}, \text{ note } T_R(w) = T_L(w^{-1})\\ D_L(w) &= T_L(w) \cap S \text{ are the left descents}\\ D_R(w) &= T_R(w) \cap S \text{ are the right descents} \end{split}$$

Corollary 2.4. $|T_L(w)| = \ell(w)$

Proof.

Let $w = s_1...s_k$ with $k = \ell(w)$. Then by Corollary *, $T_L(w) = \{s_1...s_i...s_1 | 1 \le i \le k\}$ Since $s_1...s_k$ is reduced, all $t_i = s_1...s_i...s_1$ are distinct.

Corollary 2.5. $\forall s \in S \text{ and } w \in W$

(1) $s \epsilon D_L(w) \iff$ some reduced expression for w begins with s(2) $s \epsilon D_R(w) \iff$ some reduced expression for w ends with s

Proof.

" \Leftarrow " clear " \Longrightarrow " By Corollary $*, \ell(tw) < \ell(w) \Leftrightarrow tw = s_1 ... \hat{s_i} ... s_k$ If s = t, then $w = stw = ss_1 ... \hat{s_i} ... s_k$