LECTURE 5: CHARACTERIZATION THEOREM AND EXAMPLES

MIHAELA IFRIM AND BRANDON BARRETTE

1. Strong Exchange Property

We now review the Strong Exchange Property Theorem from last lecture.
Theorem 1.1. Let $w=s_{1} s_{2} \ldots s_{k}$ be a reduced expression for $w \in W$ with $s_{i} \in S$ and let $t \in T$. Then $\ell(t w)<\ell(w)$ implies that:

$$
\begin{equation*}
t w=s_{1} \cdots \hat{s}_{i} \cdots s_{k} \quad \text { for some } 1 \leq i \leq k \tag{1.1}
\end{equation*}
$$

Corollary 1.2. Let $w=s_{1} \cdots s_{k}$ be a reduced word and let $t \in T$. Then the following are equivalent:
(1) $\ell(t w)<\ell(w)$;
(2) $t w=s_{1} \cdots \hat{s_{i}} \cdots s_{k}$ for some i;
(3) $t=s_{1} s_{2} \cdots s_{i} \cdots s_{2} s_{1}$.

Proposition 1.3. Deletion Property
Let $w=s_{1} \cdots s_{k}$ be such that $\ell(w)<k$.
Then $w=s_{1} \cdots \hat{s_{i}} \cdots \hat{s_{j}} \cdots s_{k}$ for some $1 \leq i<j \leq k$.
Proof. We choose i maximal such that $s_{i} s_{i+1} \cdots s_{k}$ is not reduced and therefore $\ell\left(s_{i} \cdots s_{k}\right)<\ell\left(s_{i+1} \cdots s_{k}\right)$. By the Strong Exchange Property we obtain:

$$
s_{i} \cdots s_{k}=s_{i+1} \cdots \hat{s_{j}} \cdots s_{k} \quad \text { for some } 1<j \leq k
$$

Using the equality above we obtain:

$$
w=s_{1} \cdots s_{k}=s_{1} \cdots \hat{s_{i}} \cdots \hat{s_{j}} \cdots s_{k}
$$

which ends our proof.
Corollary 1.4. The following properties hold:
(1) Any word $w=s_{1} \cdots s_{k}$ contains a reduced word as a subword by deleting an even number of letters.
(2) Suppose that $s_{1} \cdots s_{k}=s_{1}^{\prime} \cdots s_{k}^{\prime}$ and also suppose that both are reduced. Then $\Rightarrow\left\{s_{1}, \ldots, s_{k}\right\}=\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}$.
(3) S is a minimal generating set for W.

Proof. (1) follows from Deletion Property.
(2) Suppose $\exists s_{j}$ which is not included in the set $I:=\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}$. Here we choose j minimal with the property just mentioned. By Corollary 1.2, if $t=s_{1} \cdots s_{j} \cdots s_{1}$ then there must exists an i such that

$$
s_{1} \cdots s_{j} \cdots s_{1}=s_{1}^{\prime} \cdots s_{i}^{\prime} \cdots s_{1}^{\prime}
$$

[^0]for some i.
Therefore $s_{j}=\left(s_{j-1} \cdots s_{1}\right)\left(s_{1}^{\prime} \cdots s_{i}^{\prime} \cdots s_{1}^{\prime}\right)\left(s_{1} \cdots s_{j-1}\right)$ - where all are letters in I. Using the Deletion Property we can find a reduced subword of the right-hand side, but this will give us:
$$
s_{j}=s_{a}^{\prime} \in I
$$
which is a contradiction with the assumption that s_{j} is not in I.
(3) Follows from (2) since no element $s \in S$ can be written as a product of other elements in S.

2. Characterization of Coxeter groups

We will assume that W is an arbitrary group. Let $S \subseteq W$ be a generating set such that $s^{2}=e, \forall s \in S$. Therefore the concept of length, $\ell(w)$, where $w \in W$ still makes sense and the concept of reduced expressions also still makes sense.

In this new context, we say that the system (W, S) has the Exchange or Deletion property if the following hold:

The Exchange Property

Let $w=s_{1} \cdots s_{k}$ be reduced, and let $s \in S$. Then $\ell(s w)<\ell(w) \Rightarrow s w=$ $s_{i} \cdots \widehat{s_{i}} \cdots s_{k}$ for some $i, 1 \leq i<j<k$.

The Deletion Property

If $w=s_{1} \cdots s_{k}$, then $\ell(w)<k \Rightarrow w=s_{i} \cdots \widehat{s_{i}} \cdots \widehat{s_{j}} \cdots s_{k}$ for $1 \leq i<j<k$.

Theorem 2.1. Characterization Theorem
Let W be a group group and let $S \subseteq W$ be a generating set with $s^{2}=e \forall s \in S$.
Then the following are equivalent:
(1) (W, S) is a Coxeter system.
(2) W satisfies the Exchange Property.
(3) W satisfies the Deletion Property.

Proof. The proof will be presented in the next lecture.
Now let's look at the following example:
Example 2.2. S_{n} is the well known group of permutations of $[n] . S_{n}$ is generated by $S=\left\{s_{1}, \cdots, s_{n-1}\right\}$ where $s_{i}=(i, i+1)$. In one line notation, we have $s_{i}=[1, \cdots, i-1, i+1, i, \cdots, n]$. Recall that $s_{i}^{2}=e$.

Fixing $x \in S_{n}$ we recall that:
Right action by s_{i} :
Then $x s_{i}$ is obtained from x by interchanging the positions of $x(i)$ and $x(i+1)$. For example we have $[31524] s_{3}=[31254]$.

Left action by s_{i} :
Then $s_{i} x$ is contained from x by interchanging the values i and $i+1$.
A numerical example is the following $s_{3}[31524]=[41523]$ and this shows that S generates S_{n}.

Definition 2.3. The inversion number of $x \in S_{n}$ is given by the following expression:

$$
\operatorname{inv}(x)=|\{(i, j) \mid i<j, x(i)>x(j)\}|
$$

Looking at the definition it is easy to see that the following lemma holds:
Lemma 2.4. The following equality holds:

$$
\operatorname{inv}\left(x s_{i}\right)=\operatorname{inv}(x)+\left\{\begin{array}{cl}
1 & \text { if } x(i)<x(i+1) \\
-1 & \text { if } x(i)>x(i+1)
\end{array}\right.
$$

The property that we will prove now shows a very useful relation between the length of a word and the number of inversions of the word.
Proposition 2.5. We have the following relation:
$\ell(x)=\operatorname{inv}(x), \forall x \in S_{n}$.
Proof. We know that we have $\ell(e)=\operatorname{inv}(e)$. Then by the Lemma 2.4 we obtain that $\operatorname{inv}(x) \leq \ell(x)$.

Claim. $\ell(x) \leq \operatorname{inv}(x)$.
Proof. (of the claim) Since $\operatorname{inv}(x)=0 \Rightarrow x=e \Rightarrow \ell(e)=0$. Hence the claim is true for $\operatorname{inv}(x)=0$. We proceed by induction on $\operatorname{inv}(x)$. Let $x \in S_{n}$ be such that $\operatorname{inv}(x)=k+1$. Then $x \neq e \Rightarrow \exists s \in S$ such that $\operatorname{inv}(x s)=k$. By the induction hyphothesis $\ell(x s) \leq k \Rightarrow \ell(x) \leq k+1=\operatorname{inv}(x)$.This finishes the proof.

We recall from our previous lectures that the descent set $D_{R}(x)=\{s \in S \mid$ $\ell(x s)<\ell(x)\}$.
Proposition 2.6. For S_{n} we have $D_{R}(x)=\left\{s_{i} \in S \mid\right.$ such that $\left.x(i)>x(i+1)\right\}$. This implies that the definition of $D_{R}(x)$ that we wrote above is the same with the notion we just stated in the statement of the proposition.

Proof. By the Proposition 2.5 we have:

$$
D_{R}(x)=\{s \in S \mid \operatorname{inv}(x s)<\operatorname{inv}(x)\}=\left\{s_{i} \in S \mid \text { such that } x(i)>x(i+1)\right\}
$$

Proposition 2.7. Using the Characterization Theorem we can prove that $\left(S_{n}, S\right)$ is a Coxeter system of type A_{n-1}.

The proof will be given in the next lecture.

[^0]: Date: January 14, 2009.

