
LECTURE 6: PROOF OF CHARACTERIZATION THEOREM

BRANDON BARRETTE AND MIHAELA IFRIM

1. Characterization Theorem

Theorem 1.1. (Characterization Theorem) Let W be a group and S ⊂ W a gen-
erating set such that s2 = e ∀s ∈ S. Then the following are equivalent:

(1) (W, S) is a Coxeter system
(2) W has the Exchange Property
(3) W has the Deletion Property

Proof. Proof will follow after some propositions and corollaries. �

Proposition 1.2. (Sn, S) is a Coxeter system of type An−1.

Proof. By the Characterization Theorem, it suffices to show that (Sn, S) satis-
fies the Exchange property. Notice the following properties show that Sn is of
type An−1:

sisj = sjsi if |i− j| > 1
sisi+1si = si+1sisi+1

s2
i = e

Next, suppose w = si1 . . . sik
is a reduced word such that

`(si1 . . . sik
si) < `(si1 . . . sik

) (∗)
Then, if we can prove this claim, we will have proven that (Sn, S) satisfies the

Exchange property.

Claim. si1 . . . sik
si = si1 . . . ŝij

. . . sik
for some 1 ≤ j ≤ k.

Proof. Let a = w(i+1) and b = w(i). We proved last lecture that `(y) = inv(y) ∀y ∈
Sn. Then (∗) implies that b < a and a is to the left of b in e in one line notation
and a is to the right of b in w in one line notation. This implies that ∃j such that a
is to the left of b in si1 . . . sij−1 , and a is to the right of b in si1 . . . sij . This implies,
in one line notation, that si1 . . . sik

is the same as si1 . . . ŝij . . . sik
except that a and

b are interchanged. This completes the proof of the claim. �

Therefore, since the claim is proven, (Sn, S) satisfies the Exchange property.
�

Proof. (of the Characterization Theorem)
(1) =⇒ (2) This is a special case of the strong exchange property.
(2) =⇒ (3) This was already proved last lecture.
(3) =⇒ (2) Suppose that `(ss1 . . . sk) ≤ `(s1 . . . sk) = k. This means that
w = s1 . . . sk is reduced. By the Deletion property, two letters can be deleted
from ss1 · · · sk to obtain an expression for sw. We have two cases:
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Case 1:
Suppose s is not deleted, then ss1 . . . sk = ss1 . . . ŝi . . . ŝj . . . sk. But then s1 . . . sk =
w = s1 . . . ŝi . . . ŝj . . . sk. This implies `(w) < k, which is a contradiction since
w = s1 . . . sk is already reduced.

Case 2:
Suppose s is deleted, therefore sw = s1 . . . ŝi . . . sk for some 1 ≤ i ≤ k
Therefore the Exchange property is satisfied.

(2) =⇒ (1) Suppose (W, S) has the Exchange property. Let s1 . . . sr = e be a
relation in W , we need to show that this follows from a Coxeter relation, and thus
(W, S) will be Coxeter system.

By the Deletion property (since (2) ⇔ (3)) r = 2k which implies the relation
is equivalent to s1 . . . sk = s′1 . . . s′k.

Claim. Any relation
s1 . . . sk = s′1 . . . s′k (∗∗)

is a consequence of pairwise relations (ss′)m(s,s′) = e.

Before we begin the proof of the claim, it is important to understand some
terminology. We say a relation is fine if this claim holds.

Proof. (of claim) Perform induction on k.
Show true for k = 1
Here s = s′ therefore s2 = e, therefore true by assumptions.
Assume true for k − 1
That is, s1 . . . sk−1 = s′1 . . . s′k−1

Prove true for k
There are two cases to consider here:

Case 1: s1 . . . sk is not reduced.
Then, this implies that ∃ 1 ≤ i ≤ k such that si+1 . . . sk is reduced, but si . . . sk is
not reduced, thus by the Exchange property, we have:
si+1 . . . sk = sisi+1 . . . ŝj . . . sk for some i < j ≤ k. Since the length < k, this
expression is fine. Therefore:

s1 . . . sk = s′1 . . . s′k becomes s1 . . . sisisi+1 . . . ŝj . . . sk = s′1 . . . s′k

is also fine since length < k.

Case 2: s1 . . . sk is reduced.
Then, WLOG, we can assume that s1 6= s′1 since otherwise (∗∗) reduces to a rela-
tion of length < k.

By the Exchange property:

s1 . . . si = s′1s1 . . . si−1 for some 1 ≤ i ≤ k (†)
Which implies

s1 . . . ŝi . . . sk = s′2 . . . s′k for some 1 ≤ i ≤ k
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Which is fine by induction.

If i < k, then † is also fine since s′1 . . . s′k = s′1s1 . . . ŝi . . . sk, which is fine, and
implies s1 . . . sk = s′1 . . . s′k by †.

If i = k, then s1 . . . sk−1 = s′2 . . . s′k, which is fine since the length < k. This also
implies s′1s1 . . . sk−1 = s′1 . . . s′k which is fine by multiplying by s′1.

Now, we need to show s′1s1 . . . sk−1 = s1 . . . sk is fine.

To do this, repeat the argument with this new relation. One of two things will
happen. Either, the fineness will be settles by Case 1, or we will end up in Case 2
and the relation will reduce to:

s1s
′
1s1 . . . sk−2 = s′1s1 . . . sk−1

Is this fine? To answer the question, we repeat the argument yet again. If we fall
in Case 1, we are done, otherwise we fall in Case 2 and again reduce the relation.
Repeating this we will get the following relation:

s1s
′
1s1s

′
1 . . . = s′1s1s

′
1s1 . . .

which is a Coxeter relation.

Therefore by mathematical induction, our claim is proven.
�

Since our claim holds, we have that (W, S) is a Coxeter system. This completes
the proof of the Characterization Theorem.

�
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