LECTURE 6: PROOF OF CHARACTERIZATION THEOREM

BRANDON BARRETTE AND MIHAELA IFRIM

1. Characterization Theorem

Theorem 1.1. (Characterization Theorem) Let W be a group and $S \subset W$ a generating set such that $s^{2}=e \forall s \in S$. Then the following are equivalent:
(1) (W, S) is a Coxeter system
(2) W has the Exchange Property
(3) W has the Deletion Property

Proof. Proof will follow after some propositions and corollaries.
Proposition 1.2. $\left(S_{n}, S\right)$ is a Coxeter system of type A_{n-1}.
Proof. By the Characterization Theorem, it suffices to show that $\left(S_{n}, S\right)$ satisfies the Exchange property. Notice the following properties show that S_{n} is of type A_{n-1} :

$$
\begin{gathered}
s_{i} s_{j}=s_{j} s_{i} \text { if }|i-j|>1 \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \\
s_{i}^{2}=e
\end{gathered}
$$

Next, suppose $w=s_{i_{1}} \ldots s_{i_{k}}$ is a reduced word such that

$$
\begin{equation*}
\ell\left(s_{i_{1}} \ldots s_{i_{k}} s_{i}\right)<\ell\left(s_{i_{1}} \ldots s_{i_{k}}\right) \tag{*}
\end{equation*}
$$

Then, if we can prove this claim, we will have proven that $\left(S_{n}, S\right)$ satisfies the Exchange property.
Claim. $s_{i_{1}} \ldots s_{i_{k}} s_{i}=s_{i_{1}} \ldots \hat{\hat{i}_{j}} \ldots s_{i_{k}}$ for some $1 \leq j \leq k$.
Proof. Let $a=w(i+1)$ and $b=w(i)$. We proved last lecture that $\ell(y)=\operatorname{inv}(y) \forall y \in$ S_{n}. Then (*) implies that $b<a$ and a is to the left of b in e in one line notation and a is to the right of b in w in one line notation. This implies that $\exists j$ such that a is to the left of b in $s_{i_{1}} \ldots s_{i_{j-1}}$, and a is to the right of b in $s_{i_{1}} \ldots s_{i_{j}}$. This implies, in one line notation, that $s_{i_{1}} \ldots s_{i_{k}}$ is the same as $s_{i_{1}} \ldots \hat{{i_{j}}_{j}} \ldots s_{i_{k}}$ except that a and b are interchanged. This completes the proof of the claim.

Therefore, since the claim is proven, $\left(S_{n}, S\right)$ satisfies the Exchange property.

Proof. (of the Characterization Theorem)
$(1) \Longrightarrow(2)$ This is a special case of the strong exchange property.
$(2) \Longrightarrow(3)$ This was already proved last lecture.
$(3) \Longrightarrow(2)$ Suppose that $\ell\left(s s_{1} \ldots s_{k}\right) \leq \ell\left(s_{1} \ldots s_{k}\right)=k$. This means that $w=s_{1} \ldots s_{k}$ is reduced. By the Deletion property, two letters can be deleted from $s s_{1} \cdots s_{k}$ to obtain an expression for $s w$. We have two cases:

[^0]
Case 1:

Suppose s is not deleted, then $s s_{1} \ldots s_{k}=s s_{1} \ldots \hat{s_{i}} \ldots \hat{s_{j}} \ldots s_{k}$. But then $s_{1} \ldots s_{k}=$ $w=s_{1} \ldots \hat{s_{i}} \ldots \hat{s_{j}} \ldots s_{k}$. This implies $\ell(w)<k$, which is a contradiction since $w=s_{1} \ldots s_{k}$ is already reduced.

Case 2:
Suppose s is deleted, therefore $s w=s_{1} \ldots \hat{s_{i}} \ldots s_{k}$ for some $1 \leq i \leq k$ Therefore the Exchange property is satisfied.
$(2) \Longrightarrow(1)$ Suppose (W, S) has the Exchange property. Let $s_{1} \ldots s_{r}=e$ be a relation in W, we need to show that this follows from a Coxeter relation, and thus (W, S) will be Coxeter system.

By the Deletion property (since (2) $\Leftrightarrow(3)) r=2 k$ which implies the relation is equivalent to $s_{1} \ldots s_{k}=s_{1}^{\prime} \ldots s_{k}^{\prime}$.
Claim. Any relation

$$
s_{1} \ldots s_{k}=s_{1}^{\prime} \ldots s_{k}^{\prime} \quad(* *)
$$

is a consequence of pairwise relations $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e$.
Before we begin the proof of the claim, it is important to understand some terminology. We say a relation is fine if this claim holds.

Proof. (of claim) Perform induction on k.
Show true for $k=1$
Here $s=s^{\prime}$ therefore $s^{2}=e$, therefore true by assumptions.
Assume true for $k-1$
That is, $s_{1} \ldots s_{k-1}=s_{1}^{\prime} \ldots s_{k-1}^{\prime}$
Prove true for k
There are two cases to consider here:
Case 1: $s_{1} \ldots s_{k}$ is not reduced.
Then, this implies that $\exists 1 \leq i \leq k$ such that $s_{i+1} \ldots s_{k}$ is reduced, but $s_{i} \ldots s_{k}$ is not reduced, thus by the Exchange property, we have:
$s_{i+1} \ldots s_{k}=s_{i} s_{i+1} \ldots \hat{s_{j}} \ldots s_{k}$ for some $i<j \leq k$. Since the length $<k$, this expression is fine. Therefore:

$$
s_{1} \ldots s_{k}=s_{1}^{\prime} \ldots s_{k}^{\prime} \text { becomes } s_{1} \ldots s_{i} s_{i} s_{i+1} \ldots \hat{s_{j}} \ldots s_{k}=s_{1}^{\prime} \ldots s_{k}^{\prime}
$$

is also fine since length $<k$.
Case 2: $s_{1} \ldots s_{k}$ is reduced.
Then, WLOG, we can assume that $s_{1} \neq s_{1}^{\prime}$ since otherwise $(* *)$ reduces to a relation of length $<k$.

By the Exchange property:

$$
s_{1} \ldots s_{i}=s_{1}^{\prime} s_{1} \ldots s_{i-1} \text { for some } 1 \leq i \leq k
$$

Which implies

$$
s_{1} \ldots \hat{s_{i}} \ldots s_{k}=s_{2}^{\prime} \ldots s_{k}^{\prime} \text { for some } 1 \leq i \leq k
$$

Which is fine by induction.
If $\mathbf{i}<\mathbf{k}$, then \dagger is also fine since $s_{1}^{\prime} \ldots s_{k}^{\prime}=s_{1}^{\prime} s_{1} \ldots \hat{s_{i}} \ldots s_{k}$, which is fine, and implies $s_{1} \ldots s_{k}=s_{1}^{\prime} \ldots s_{k}^{\prime}$ by \dagger.

If $\mathbf{i}=\mathbf{k}$, then $s_{1} \ldots s_{k-1}=s_{2}^{\prime} \ldots s_{k}^{\prime}$, which is fine since the length $<k$. This also implies $s_{1}^{\prime} s_{1} \ldots s_{k-1}=s_{1}^{\prime} \ldots s_{k}^{\prime}$ which is fine by multiplying by s_{1}^{\prime}.

Now, we need to show $s_{1}^{\prime} s_{1} \ldots s_{k-1}=s_{1} \ldots s_{k}$ is fine.
To do this, repeat the argument with this new relation. One of two things will happen. Either, the fineness will be settles by Case 1, or we will end up in Case 2 and the relation will reduce to:

$$
s_{1} s_{1}^{\prime} s_{1} \ldots s_{k-2}=s_{1}^{\prime} s_{1} \ldots s_{k-1}
$$

Is this fine? To answer the question, we repeat the argument yet again. If we fall in Case 1, we are done, otherwise we fall in Case 2 and again reduce the relation. Repeating this we will get the following relation:

$$
s_{1} s_{1}^{\prime} s_{1} s_{1}^{\prime} \ldots=s_{1}^{\prime} s_{1} s_{1}^{\prime} s_{1} \ldots
$$

which is a Coxeter relation.
Therefore by mathematical induction, our claim is proven.
Since our claim holds, we have that (W, S) is a Coxeter system. This completes the proof of the Characterization Theorem.

[^0]: Date: January 16, 2009.

