
LECTURE 9: LIFTING PROPERTY AND POSET STRUCTURE
OF FINITE COXETER GROUPS

TOM DENTON

1. Further Properties of the Bruhat Order

Previously we proved the following lemma:

Lemma 1. Let u, w ∈ W,u 6= w and s1 . . . sq a reduced word for w, and u =
si1 . . . sik

is a reduced subword of s1 . . . sq. Then there exists a v ∈ W such that:
(1) v > u
(2) l(v) = l(u) + 1
(3) Some reduced word of v is a subword of s1 . . . sq.

From this, we established the Subword Property.

Theorem 2 (Subword Property). Let s1 . . . sq be a reduced word for w ∈ W . Then
for any u ∈ W , we have u ≤ w ⇐⇒ there exists a reduced expression for u that is
a subword of s1 . . . sq.

From this, we observe that any interval in the Bruhat order is finite, as there
are only finitely many subwords of any reduced expression. We also obtain a first
result concerning automorphisms of the Bruhat order:

Corollary 3. The map w 7→ w−1 is an automorphism of the Bruhat order: For
any u ≤ w, we have u−1 ≤ w−1.

Proof. Given a reduced word s1 . . . sq for w, we have w−1 = sq . . . s1 a reduced
word for w−1. Since u ≤ w, set u = si1 . . . sik

a reduced expression that is also
a subword of s1 . . . sq. Then u−1 = sik

. . . si1 is also a reduced expression, and a
subword of that for w−1, so the result follows from the Subword Property. �

Theorem 4 (Chain Property). Let u < w. Then there exists a chain u = x0 <
x1 < . . . xk = w such that l(xi) = l(u) + i.

Proof. Follows directly from the Lemma. �

From now on let u / w denote a covering relation in Bruhat order; thus if u / w
there exists no x such that u < x < w. In particular, by the Chain property, if
u / w, we have l(w) = l(u) + 1. This endows the Bruhat order with the structure
of a ranked poset, with the rank of an element of W given by its length.

Proposition 5 (Lifting Property). Let u < w and s ∈ DL(w), a left descent of w,
but s 6∈ DL(u). Then u ≤ sw and su ≤ w.
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Proof. First notice that s 6∈ DL(u) implies that u < su. Let sw = s1 . . . sq be a
reduced word, so that w = ss1 . . . sq is also a reduced word. Then by the subword
property, there exists a reduced subword such that u = si1 . . . sik

. Since s is not a
left descent of u, we conclude that si1 6= s.

Then u = si1 . . . sik
a subword of sw = s1 . . . sq, so u < sw. Multiply this

relation on the left by s to get su < w. �

Definition 6. A poset P is directed if for any u, w ∈ P,∃z ∈ P such that u, w ≤ z.

Proposition 7. The Bruhat order is a directed poset.

Proof. We induct on l(u) + l(w).
For the base case, if l(u) + l(w) = 0, then u = w = idW , and we can take

z = idW .
For l(u) + l(w) > 0 we can assume without loss of generality that l(u) > 0.
Since u 6= idW , we can find an s ∈ S such that su < u. By the induction

hypothesis, there exists an x ∈ W such that su < x and w < x. We now consider
two cases.

(1) sx < x: By the lifting property, we have u ≤ x. But then u and w are both
less than x, and we are done.

(2) sx > x: By the lifting property again, we have u ≤ sx. And then w ≤ x ≤
sx, so again, we are fine.

�

2. Poset Structure of Finite Coxeter Groups

In the case of a finite Coxeter group, the directedness property implies that there
exists a unique element of maximal rank, which we will denote w0.

Proposition 8. (1) For W finite, ∃!w0 such that w < w0 for all w ∈ W .
(2) Suppose (W,S) a Coxeter system, and there exists an x ∈ W such that

DL(x) = S. Then W is finite and x = w0.

Proof. (1) The first statement follows directly from W finite and directed: As-
sume two maximal rank elements, then another element is greater than
both, contradicting maximality.

(2) We want to show that u ≤ x for all u ∈ W ; induct on the length of u.
For the base case, take u the identity; then u ≤ x, as desired.
For l(u) > 0, there exists s ∈ S such that su < u, and by induction, we

have su ≤ x. Now s 6∈ DL(u), and we can apply the Lifting property to get
u ≤ x, which finishes the induction.

Now W = [idW , x]. Since intervals in the Bruhat order are finite, then
W is finite.

�

Proposition 9. (1) w2
0 = idW

(2) l(ww0) = l(w0)− l(w)
(3) l(w0w) = l(w0)− l(w)
(4) l(ww0w) = l(w) for all w ∈ W .
(5) TL(ww0) = T \ TL(w)
(6) l(w0) = |T |
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Proof. (1) l(w0) = l(w−1
0 ). But w0 is the unique highest rank element, so

w0 = w−1
0 , which yields the result.

(2) l(w−1) + l(ww0) ≥ l(w0) by a Lemma previously proved. Notice w0 = w−1
0

and rearrange the inequality to get l(ww0) ≥ l(w0) − l(w). For the other
inequality, we apply induction, downward from w0. When w = w0, we have
l(w0)− l(w) = 0 = l(w2

0), as desired.
For the induction step, take w < w0, and s ∈ S such that w < sw. Then

l(ww0) ≤ l(sww0) + 1 ≤ l(w0)− l(sw) + 1 = l(w0)− l(w), as desired. The
second inequality applies the induction hypothesis. Then we are done.

(3) For the right-sided identity, analyze the length l((w0w)−1) = l(w−1w0).
The result follows immediately from the previous identity.

(4) Use statement 2 twice.
(5) By 2, tw < w ⇐⇒ tww0 > ww0. That is, t ∈ TL(w) ⇐⇒ t 6∈ TL(ww0),

which is exactly the statement.
(6) l(w0) is the number of elements in TL(w0), by a previous lemma. Applying

4 with w = idW yields the result.
�

Corollary 10. For the Bruhat order on finite Coxeter groups,
(1) The maps w → ww0 and w → w0w are both anti-automorphisms of the

Bruhat order.
(2) The map w → ww0w is an automorphism of the Bruhat order.

Example: Set W = Sn, and recall that the longest element in Sn is w0 =
[n, n− 1, . . . , 1] in one-line notation. Recall also that multiplying a permutation x
in one-line notation on the right by any w ∈ Sn interchanges the places in x, while
multiplying on the left interchanges the numbers.

Thus, if we take w a permutation, then ww0 is the ‘reverse’ of w in one line
notation. Also, we can notice that w0w acts on the values, and sends each i in w
to n + 1 − i. Conjugating w by w0 performs both operations: reverse w and then
invert its values.

For example, let w = [4, 1, 5, 2, 3]. Then ww0 = [3, 2, 5, 1, 4], w0w = [2, 5, 1, 4, 3],
and w0ww0 = [3, 4, 1, 5, 2].

Notice also that w0Sw0 = S, and that x → w0xw0 is a group automorphism of
Sn. This automorphism induces an automorphism of the Dynkin Diagram of Sn.
In fact, there is only one automorphism of the Sn Dynkin diagram, obtained by
flipping it, and this is exactly what the conjugation of S by w0 does.

We have the following result, whose proof we omit, which shows that any auto-
morphism of the Bruhat order which fixes the generators of W must be one of two
automorphisms:

Theorem 11 (Hombergh, Waterhouse). Let (W,S) be an irreducible Coxeter sys-
tem, with |S| ≥ 3. Let φ : W → W be an automorphism of the Bruhat order with
φ(s) = s for all s ∈ S. Then φ(x) = x or φ(x) = x−1 for all x ∈ W .


