Homework 1

posted January 12
Problem 1. Show that the dominance partial order on partitions of n satisfies

$$
\lambda \unlhd \mu \quad \Longleftrightarrow \quad \lambda^{t} \unrhd \mu^{t},
$$

where the t denotes the transpose of the partition.
Problem 2. For $1 \leq i<j \leq n$, define the raising operator $R_{i j}$ on \mathbb{Z}^{n} by

$$
R_{i j}\left(\nu_{1}, \ldots, \nu_{n}\right)=\left(\nu_{1}, \ldots, \nu_{i}+1, \ldots, \nu_{j}-1, \ldots, \nu_{n}\right)
$$

(1) Show that the dominance order \unlhd is the transitive closure of the relation on partitions $\lambda \rightarrow \mu$ if $\mu=R_{i j} \lambda$ for some $i<j$.
(2) Show that μ covers λ if and only if $\mu=R_{i j} \lambda$, where i, j satisfy the following condition: either $j=i+1$ or $\lambda_{i}=\lambda_{j}$ (or both).
(3) Find the smallest n such that the dominance order on partitions of n is not a total ordering, and draw its Hasse diagram.

Problem 3. Let h_{i} be the complete homogeneous symmetric functions. Show that $u_{i} \in \Lambda$ satisfying $u_{0}=1$ and

$$
\sum_{i=0}^{n}(-1)^{i} u_{i} h_{n-i}=0 \quad \text { for all } n \geq 1
$$

are uniquely determined.
Problem 4. Let $f \in \Lambda^{n}$, and for any $g \in \Lambda^{n}$ define $g_{k} \in \Lambda^{n k}$ by

$$
g_{k}\left(x_{1}, x_{2}, \ldots\right)=g\left(x_{1}^{k}, x_{2}^{k}, \ldots\right)
$$

Show that

$$
\omega f_{k}=(-1)^{n(k-1)}(\omega f)_{k}
$$

Problem 5. Let $w \in S_{n}$ be an element of the symmetric group of cycle type λ. Give a direct bijective proof that the number of elements $v \in S_{n}$ commuting with w is equal to

$$
z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots
$$

where $m_{i}=m_{i}(\lambda)$ is the number of parts of λ of size i.
Problem 6. Show that

$$
\prod_{\lambda \vdash n} \prod_{i \geq 1} m_{i}(\lambda)!=\prod_{\lambda \vdash n} \prod_{i \geq 1} i^{m_{i}(\lambda)} .
$$

Problem 7. The symmetric functions $f_{\lambda}=\omega m_{\lambda}$ are sometimes called the "forgotten" symmetric functions. Show that the matrix of coefficients of the forgotten symmetric functions f_{λ} expressed in terms of monomial symmetric functions m_{λ} is the transpose of the matrix of the elementary functions e_{λ} expressed in terms of the complete homogeneous symmetric functions h_{λ}.

Problem 8. Let ∂p_{k} be the operator on symmetric functions given by partial differentiation with respect to p_{k}, under the identification of symmetric functions with polynomials $f \in \mathbb{Q}\left[p_{1}, p_{2}, \ldots\right]$. Show that ∂p_{k} is adjoint with respect to the scalar product to the operator of multiplication by p_{k} / k.

