Homework 4

posted February 23

Problem 1.

(1) Recall from class that

$$
h_{n}=\sum_{\lambda \vdash n} \frac{1}{z_{\lambda}} p_{\lambda},
$$

where $z_{\lambda}=\prod_{i} i^{m_{i}} m_{i}$! for $\lambda=\left(1^{m_{1}}, 2^{m_{2}}, \ldots\right)$. Show that this is equivalent to Newton's determinant formula

$$
h_{n}=\frac{1}{n!} \operatorname{det}\left(\begin{array}{ccccc}
p_{1} & -1 & 0 & \ldots & 0 \\
p_{2} & p_{1} & -2 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
p_{n-1} & p_{n-2} & . & \ldots & -(n-1) \\
p_{n} & p_{n-1} & . & \ldots & p_{1}
\end{array}\right)
$$

(2) Show that e_{n} is given by the same determinant without the minus signs.

Problem 2. Prove the identity

$$
s_{(n-1, n-2, \ldots, 1)}\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right) .
$$

Problem 3. Permutation $\pi=x_{1} x_{2} \cdots x_{n}$ has a descent at index i if $x_{i}>$ x_{i+1}. The corresponding descent set is

$$
\text { Des } \pi=\{i \mid i \text { is a descent of } \pi\} .
$$

Similarly, i is a descent for standard tableau T if $i+1$ is in a lower row than i in T (in English notation). The descent set of T is

$$
\text { Des } T=\{i \mid i \text { is a descent of } T\} \text {. }
$$

(1) Show that if, by Robinson-Schensted, $Q(\pi)=Q$, then Des $\pi=$ Des Q.
(2) Let $\lambda \vdash n, S=\left\{n_{1}<n_{2}<\cdots<n_{k}\right\} \subset\{1,2, \ldots, n-1\}$, and $\mu=\left(n_{1}, n_{2}-n_{1}, \ldots, n-n_{k}\right)$. Then

$$
\left|\left\{\pi \in S_{n} \mid \operatorname{shape}(Q(\pi))=\lambda, \operatorname{Des} \pi \subset S\right\}\right|=f^{\lambda} K_{\lambda \mu} .
$$

Problem 4. Let T be a standard Young tableau of shape λ, and let b be its corner box occupied by entry 1 . Define

$$
\Delta(T)=\operatorname{jdt}_{b}(\tilde{T})
$$

where \tilde{T} is the skew standard tableau of shape $\lambda /(1)$ obtained from T by removing the box b and subsequently decreasing all the remaining entries by one. The evacuation tableau $\operatorname{evac}(T)$ is the standard tableau of shape λ encoded by the sequence of shapes of

$$
\emptyset, \Delta^{n-1}(T), \Delta^{n-2}(T), \ldots, \Delta^{2}(T), \Delta(T), T .
$$

For a permuation $\pi=x_{1} x_{2} \cdots x_{n} \in S_{n}$ define

$$
w^{\#}=\left(n+1-x_{n}\right)\left(n+1-x_{n-1}\right) \cdots\left(n+1-x_{1}\right) .
$$

(1) Show: If w is mapped to (P, Q) under RSK, then $w^{\#}$ is mapped to (evac $(P), \operatorname{evac}(Q))$ under RSK.
(2) Show that evac is an involution.

