Homework 5

posted March 2
Problem 1. Let $|\lambda|=|\mu|=n$. Show that $\left\langle h_{\lambda}, h_{\mu}\right\rangle$ is equal to the number of double cosets $S_{\lambda} w S_{\mu}$ in the symmetric group S_{n}, where $S_{\lambda}=S_{\lambda_{1}} \times S_{\lambda_{2}} \times$ $\cdots \times S_{\lambda_{\ell}}$, embedded as a subgroup of S_{n}, similarly for S_{μ}, and $w \in S_{n}$.

Problem 2. Define the Kronecker product on symmetric functions in terms of the power-sum basis by

$$
p_{\lambda} \star p_{\mu}=\delta_{\lambda \mu} z_{\lambda} p_{\lambda} .
$$

Equivalently, the symmetric functions $p_{\lambda} / z_{\lambda}$ are orthogonal idempotents with respect to \star.
(1) Prove that the Kronecker coefficients $a_{\lambda \mu \nu}$ defined by

$$
s_{\mu} \star s_{\nu}=\sum_{\lambda} a_{\lambda \mu \nu} s_{\lambda}
$$

are invariant under permuting the indices λ, μ, ν.
(2) Show that if $f \in \Lambda^{n}$, then $e_{n} \star f=w f$.

Remark: In fact $a_{\lambda \mu \nu}$ are non-negative integers. It is an open problem to find a combinatorial rule for the computation of the Kronecker coefficients, except for some special cases.

