MAT 246

Winter 2009

Homework 5 posted March 2

Problem 1. Let $|\lambda| = |\mu| = n$. Show that $\langle h_{\lambda}, h_{\mu} \rangle$ is equal to the number of double cosets $S_{\lambda}wS_{\mu}$ in the symmetric group S_n , where $S_{\lambda} = S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_{\ell}}$, embedded as a subgroup of S_n , similarly for S_{μ} , and $w \in S_n$.

Problem 2. Define the Kronecker product on symmetric functions in terms of the power-sum basis by

$$p_{\lambda} \star p_{\mu} = \delta_{\lambda\mu} z_{\lambda} p_{\lambda}.$$

Equivalently, the symmetric functions p_{λ}/z_{λ} are orthogonal idempotents with respect to \star .

(1) Prove that the Kronecker coefficients $a_{\lambda\mu\nu}$ defined by

$$s_{\mu} \star s_{\nu} = \sum_{\lambda} a_{\lambda \mu \nu} s_{\lambda}$$

are invariant under permuting the indices λ, μ, ν .

(2) Show that if $f \in \Lambda^n$, then $e_n \star f = wf$.

Remark: In fact $a_{\lambda\mu\nu}$ are non-negative integers. It is an open problem to find a combinatorial rule for the computation of the Kronecker coefficients, except for some special cases.