Homework 1

due Friday January 17, 2014 in class

1. (cf. Artin 8.1.1)

(a) Prove that every real square matrix is the sum of a symmetric matrix and a skew-symmetric matrix $\left(A^{t}=-A\right)$ in exactly one way.
(b) Let \langle,$\rangle be a bilinear form on a real vector space V$. Show that there is a symmetric form (,) and a skew-symmetric form $[$,$] so that \langle\rangle=,()+,[$,$] .$
2. Let \langle,$\rangle be a symmetric bilinear form on a vector space V$ over a field F. The function $q: V \rightarrow F$ defined by $q(v)=\langle v, v\rangle$ is called the quadratic form associated to the bilinear form. Show how to recover the bilinear form from q (if the characteristic of the field F is not 2) by expanding $q(v+w)$.
3. (cf. Artin 8.4.3) A matrix B is called positive semidefinite if $X^{t} B X \geq 0$ for all $X \in \mathbb{R}^{n}$. Prove that $B=A^{t} A$ is positive semidefinite for any $m \times n$ real matrix A.
4. (cf. Artin 8.4.7) Apply the Gram-Schmidt procedure to the basis $(1,1,0)^{t},(1,0,1)^{t},(0,1,1)^{t}$, when the form is dot product.
5. Let A be the matrix of a symmetric bilinear form \langle,$\rangle with respect to$ some basis. Prove or disprove: The eigenvalues of A are independent of the basis.
6. Prove that the only real matrix which is orthogonal, symmetric, and positive definite is the identity.
7. (cf. Artin 8.4.12) Let $V=\mathbb{R}^{2 \times 2}$ be the vector space of real 2×2 matrices.
(a) Determine the matrix of the bilinear form $\langle A, B\rangle=\operatorname{trace}(A B)$ on V with respect to the standard basis $\left\{e_{i j}\right\}$.
(b) Determine the signature of this form.
(c) Find an orthogonal basis for this form.
(d) Determine the signature of the form on the subspace of V of matrices with trace zero.

