## Homework 3

due January 31, 2014

1. Find a subgroup of $G L_{2}(\mathbb{R})$ which is isomorphic to $\mathbb{C}^{\times}$.
2. (Artin 9.1.2) A matrix $P$ is orthogonal if and only if its columns form an orthonormal basis. Describe the properties that the columns of a matrix must have in order for it to be in the Lorentz group $O_{3,1}$.
3. (Artin 9.1.6) Prove that the following matrices are symplectic, if the blocks are $n \times n$ :
$\left(\begin{array}{ll}I^{-I} & \end{array}\right),\left(\begin{array}{ll}A^{t} & \\ & A^{-1}\end{array}\right),\left(\begin{array}{cc}I & B \\ & I\end{array}\right)$ where $B=B^{t}$ and $A$ is invertible.
4. (Artin 9.3.1) Let $P, Q$ be elements of $S U_{2}$, represented by the real vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. Compute the real vector which corresponds to the product $P Q$.
5. Let $G$ be the group of matrices of the form $\left(\begin{array}{c}x \\ y \\ 1\end{array}\right)$, where $x, y \in \mathbb{R}$ and $x>0$. Determine the conjugacy classes in $G$, and draw them in the $(x, y)$ plane.
6. Let $a=x_{1}+i x_{2}$ and $b=x_{3}+i x_{4}$ be two complex numbers. Show that $a \bar{a}+b \bar{b}=1$ if and only if $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1$. Conclude that there is a bijective correspondence between $S U_{2}(\mathbb{C})$ and the 3 -sphere $S^{3}$.
