Homework 4

due February 7, 2014

1. Let $Q \in U_{2}(\mathbb{C})$ and $\delta=\operatorname{det} Q$. Show that if ϵ is a square root of δ, then $\epsilon \bar{\epsilon}=1$, and $\operatorname{det}(\bar{\epsilon} Q)=1$.
2. Suppose that $A, A^{\prime} \in S U_{2}(\mathbb{C})$ are trace 0 matrices corresponding to the points $y=\left(0, y_{2}, y_{3}, y_{4}\right)$ and $y^{\prime}=\left(0, y_{2}^{\prime}, y_{3}^{\prime}, y_{4}^{\prime}\right)$ respectively, under κ. Show that if we denote the usual dot product of y and y^{\prime} in matrix notation by $\left\langle A, A^{\prime}\right\rangle$, then $\left\langle A, A^{\prime}\right\rangle=-\frac{1}{2} \operatorname{tr}\left(A A^{\prime}\right)$.
3. Prove the following: The set $V=\left\{A \in M_{2}(\mathbb{C}) \mid A^{*}=-A, \operatorname{tr} A=0\right\}$ is a vector space over \mathbb{R} under the usual matrix addition and

$$
\mathcal{B}=\left\{\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\right\}
$$

is a basis for V.
4. Let $P=\left(\begin{array}{cc}\frac{i}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{-1+i}{\sqrt{3}} & \frac{-i}{\sqrt{3}}\end{array}\right) \in S U_{2}(\mathbb{C})$. Explicitly compute the matrix $\varphi(P)$ where $\varphi: S U_{2}(\mathbb{C}) \rightarrow S O_{3}(\mathbb{R})$ is the orthogonal representation.
5. (Artin 10.1.1) Show that the image of a representation of dimension 1 of a finite group is a cyclic group.

